
Precise Data Identification Services for Long Tail Research
Data

Stefan Pröll
SBA Research
Vienna, Austria
sproell@sba-
research.org

Kristof Meixner
Vienna University of

Technology
Vienna, Austria

kristof.meixner@fatlenny.net

Andreas Rauber
Vienna University of

Technology
Vienna, Austria

rauber@ifs.tuwien.ac.at

ABSTRACT
While sophisticated research infrastructures assist scientists
in managing massive volumes of data, the so-called long tail
of research data frequently suffers from a lack of such ser-
vices. This is mostly due to the complexity caused by the va-
riety of data to be managed and a lack of easily standardise-
able procedures in highly diverse research settings. Yet, as
even domains in this long tail of research data are increas-
ingly data-driven, scientists need efficient means to precisely
communicate, which version and subset of data was used in a
particular study to enable reproducibility and comparability
of result and foster data re-use.

This paper presents three implementations of systems sup-
porting such data identification services for comma sepa-
rated value (CSV) files, a dominant format for data ex-
change in these settings. The implementations are based
on the recommendations of the Working Group on Dynamic
Data Citation of the Research Data Alliance (RDA). They
provide implicit change tracking of all data modifications,
while precise subsets are identified via the respective subset-
ting process. These enhances reproducibility of experiments
and allows efficient sharing of specific subsets of data even
in highly dynamic data settings.

Keywords
Data Identification, Data Citation, Reproducibility, Long
Tail Research Data

1. INTRODUCTION
Human beings in general and researchers in particular are

said to be lazy when tedious tasks not directly related to the
primary research endeavour are due. Unfortunately, this in-
cludes providing metadata for data sets, storing, archiving
and citing the data used in a research paper. This increas-
ingly becomes an issue, as science has already entered the
area of data intensive research [1], where huge amounts of
data are collected from sensors and processed in complex

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

simulations. Without being able to share this data, we are
creating data silos, which hinder repeatability and verifya-
bility of experiments and the re-use of data. In this work,
we present three methods for improving the identification
of subsets of dynamic data, by automating obnoxious tasks.
Our goal is to address data identification in small and big
data scenarios. Specifically, we focus on comma separated
value (CSV) files, which are prevalent in both settings. Re-
cent open data initiatives such as in the UK1, USA2 or Aus-
tria3 provide access to government data for the public. Most
of these portals offer a range of formats for their data sets
and the majority of the formats are in plain text, allowing
simple processing and human readability. More than 50 %
of the data sets from the open data portals of the UK and
Austria for instance are available in CSV4. The CSV format
is used for exchanging data and often provided as data ex-
port from more complex database systems. For this reason
very large collections of CSV files exist. Despite the rela-
tively small size of individual CSV files, handling massive
numbers of CSV files in multiple versions is a challenge in
big data scenarios [2].

1.1 Little Science, Big Science
Contrary to many high-volume big data settings, where

standardised infrastructure are available, there exist other
big data settings with less mature processes, due to the lack
of tools, resources and community exchange. This area is
denoted the long tail of research data and subsumes large
portions of data that are highly heterogeneous, managed
predominantly locally within each researcher’s environment,
and frequently not properly transferred to and managed
within well-curated repositories. The reason is that in the
so called little science [3, 4], common standards and defined
best practices are rare. This is particular true in research
disciplines, which do not yet have a tradition of working
with advanced research infrastructures and many data sets
still reside on the machine of the researcher. Being able to
identify which data set served as the input for a particu-
lar experiment, is based on the rigour of the scientists, and
their ability to identify the particular data set again, often
without proper tool support.

Reproducibility is a core requirement in many research
settings. It can be tackled from several perspectives, in-
cluding organisational, social and technical views. For re-

1http://data.gov.uk
2http://www.data.gov
3https://www.data.gv.at
4Data collected from the portals at 22.04.2016

searchers, the authors of [5] introduced 10 rules for making
computational results reproducible, by describing all inter-
mediate steps and storing the data artifacts used as inputs
and produced as outputs. Both worlds - small and large scale
data experiments - share the difficulty of precisely identify-
ing data sets used as input and produced as output. This
can be attributed to two main reasons: the dynamics fre-
quently encountered in evolving data sets, and the fact that
researchers tend to use specific subsets of data sets for spe-
cific analysis that need to be precisely identified. Whereas
the identification of a data set in smaller scale settings can
be figuratively compared to the search of a needle in the hay
stack, identifying evolving data sets in large scale environ-
ments is rather the search for the needle in a silage.

1.2 Versioning Research Data
As new data is being added and corrections are made in

existing data sets, we face the questions of how intermediate
revisions of a data source can be efficiently managed. Hav-
ing this data available, i.e. being able to obtain an earlier
version of a data set, is a fundamental requirement for the re-
producibility of research processes. Access to earlier versions
is also essential to support comparability of experiments by
running different experiments on identical data. Thus, main-
taining and accessing dynamically changing research data is
a common challenge in many disciplines. Storing duplicates
of data sets, the prevalent approach to address this prob-
lem, hardly scales with large and distributed data volumes,
while increasing the complexity of having to manage enor-
mous amounts of data files. This calls for more efficient ways
of handling versions of evolving data files.

1.3 Creating Subsets
In many scientific experiments, researchers are further in-

terested in analysing only a specific subset of an entire data
set. The basic methods needed for creating subsets are filter-
ing and sorting. Creating a subset is based on implicit infor-
mation which records to include into a data set and which
ones to omit. So far this process is hardly captured and
researchers tend to store subsets as individual files, causing
high redundancy problems and leading to an explosion of in-
dividual data files to be managed. Alternatively, researchers
may chose to refer to the entire data set and provide a nat-
ural language description of which subset they were using.
Albeit, this description is frequently ambiguous and may re-
quire the reader to invest significant effort to recreate the
extract same subset, while making it very hard to verify
whether the resulting subset is identical.

In this work we present an approach allowing to efficiently
identify data sets and derived subsets, even if the data source
is still evolving, i.e. new records are added or existing records
modified. These identification services can be integrated
into scientific workflows, and therefore allow to unambigu-
ously pinpoint the specific subset and version. Our approach
is based upon versioning and timestamping the data as well
as query based subsets of data being used in an experiment
or visualisation. In our approach, we interpret query in a
rather broad way, as by query, we understand any descriptive
request for a subset of data. A query can either be an actual
database query, or any operation allowing to retrieve a sub-
set from a data source using, for example, scripts. Instead
of creating duplicates of data, we use queries for (re-) con-
structing subsets on demand. We trace the subsetting pro-

cess and assign persistent identifiers (PID) to these queries
instead of static data sets. With this mechanism, we pro-
vide reproducible data sets by linking the PID to the subset
creation process and matching the data against a versioned
state of the source data set. This approach has been re-
leased as a recommendation by the RDA Working Group on
data citation [6] and refined in [7] to address efficient and
precise identification and citation of subsets of potentially
highly dynamic data.

We present three implementations of this approach sup-
porting CSV data and compare their respective advantages
and disadvantages. The first approach is based on a simple
file-system based versioning with script-able queries. The
second approach is an extension of the first approach and
based on Git branching, which enables users to work simul-
taneously with data sets without distracting each other. The
third approach uses transparent migration of the CSV data
into a relational database system, allowing more efficient
versioning and more flexible query-based subset generation.

The remainder of this paper is organised as follows. Sec-
tion 2 provides an overview of the state of the art from
the areas of research data management, data citation and
persistent identification. Section 3 outlines the challenges
of dynamic data citation in research areas working with
the long tale of research data. In Section 4 we introduce
three realisations of the dynamic data citation method op-
timised particularly for small and medium-sized data sets
distributed as CSV files. Section 5 provides the evaluation
of the approaches. The paper is closed by a conclusion and
an outlook in Section 6.

2. RELATED WORK
Citing publications has a century old tradition and its

methods have been applied to modern scholarly communi-
cation including data sets [8, 9]. We need to be able to
identify such data sets precisely. As URLs are not a long
term option, the concept of persistent identifiers was intro-
duced. Persistence is achieved by using centrally managed
PID systems [10], which utilise redirection to resolve new
locations of data files correctly. In many cases so called
landing pages are the target of such resolvers [11]. Landing
pages often contain additional metadata for human readers,
but no standard solution regarding versioning and subset-
ting of data sets is provided, that is accessible by humans
and machines. Recent developments try to enrich the mere
redirection purpose identifier infrastructures by adding ma-
chine readable metadata [12] and providing the context of
data sets in a more sophisticated way [13]. We thus need
to ensure that our solution can support these mechanisms
of persistent data identification and citation by allowing the
assignment of PIDs to data.

Current citation practices usually refer to static data files.
However, we increasingly find situations where such data
files are dynamic, i.e. new data may be added at certain
intervals of time. If we want to work with the data as it
existed at a specific point in time (e.g. to verify the re-
peatability of an experiment, or to compare the result of a
new method with earlier published results), we need to en-
sure that we can provide exactly the same data as input. To
achieve this, data needs to be versioned. Versioning data is
a common task in the data management domain [14] and
implemented in software applications dealing with critical
data [15]. With decreasing storage costs preserving previ-

ous versions even of high volume data has become a service
offered by many data providers but still storing multiple ver-
sions is a challenge [16]. Storing previous versions of data
sets is usually accompanied by timestamps [17]. Each op-
eration which changes the data is recorded and annotated
with a timestamp of its occurrence.

The second challenge relates to describing and identify-
ing the specific subset of data used in a given experiment
or visualisation. As mentioned above, natural language de-
scription frequently is not precise enough to unambiguously
describe a specific subset. Storing redundant copies, on the
other hand, does not scale well. Thus, the concept of a dy-
namic identification of subsets using query stores has been
introduced [18]. The query store does not only store the
queries as text, but also preserves the parameters of each
query. This allows providing this information on other rep-
resentations than the original query and enables to migrate
the query to other systems. The query store operates on ver-
sioned data and queries [19], which allows retrieving only
those versions of the records which have been valid during
the original execution time. The data and the queries are
versioned, the system can be used for retrieving subsets of
large data sources exactly the same way as they have been
at any given point in time [20].

The Research Data Alliance (RDA) Data Citation Work-
ing Group published 14 recommendations on how to make
research data citable [7]. The RDA data citation mecha-
nism can be used for evolving and for static data and is based
upon versioned data and query mechanisms, which allow to
retrieve previous versions of specific data sets again.

3. CHALLENGES IN HANDLING SMALLER
SCALE RESEARCH DATA

Research disciplines and data in the so-called “long tail”
are often suffering from a lack of professional tools and in-
frastructure which could support researchers in creating, us-
ing, sharing and verifying research data sets. Data serves as
input to scientific process. Thus if peer researchers want to
repeat the process again or reuse the data to compare re-
sults of different approaches on the same data, means for
verifying if the correct data were used are essential. Yet,
this is far from trivial, with complexity caused primarily by
two issues: dynamics in the data and the usage (and thus
precise identification) of specific subsets of data.

3.1 Versioning Approaches: How Change is
Traced

While researchers used to share static data files in the
past, in current research settings the data we use is increas-
ingly dynamic: new data being added, errors being cor-
rected, wrong items being deleted. Ways this is dealt with
include batch release of subsequent versions of the data, re-
sulting in delayed release of corrections as they need to be ag-
gregated until the next monthly, quarterly or annual release
is due, as well as managing many redundant files, leading to
high complexity in file naming and versioning conventions.
Typically researchers utilise a rename and copy approach,
where each version of a data set is distinguished by its file
name. Recommendations for naming files exist [21], sug-
gesting to use project or experiment name or acronym, coor-
dinates, names, dates, version numbers and file extension for
application-specific files. Nevertheless it is cumbersome and

error prone for researchers. We thus need to devise mecha-
nisms that allow researchers to manage different versions of
evolving data, allowing them to go back to earlier versions
of data when needed in order to repeat an experiment or
compare results. This should happen in an automated way,
not putting the burden of version management and identifi-
cation of changes on the researcher.

3.2 Creating Subsets From Implicit Informa-
tion

Researchers often work with subsets from larger data sources,
for curating specific aspects of a data set or visualising a
specific view. Many publications only cite the full, raw
data source and describe used subsets only superficially or
ambiguously, by using natural language description for in-
stance. From a reproducibility perspective, it is essential
to know precisely, which subsets of data was used during a
processing step. In contrast to large scale systems, which
often guide researchers through standardised workflows of
data filtering, the procedures in smaller scale research are
often less well structured and defined. For this reason there
is a larger variance in the way how subsets of data can be
obtained and how subsets have been created. In larger scale
settings, sophisticated database management systems are in
place. In the small scale domain, text processing or spread-
sheet programs are often used for creating a subset from a
file. Scripting languages allow filtering, sorting and selecting
subsets from file in a more automated way, but obtaining a
specific subset again from a versioned data file in a repro-
ducible way is a challenge.

For making implicit sub-setting information explicit, we
need to trace the subset creation process itself and store this
information in a persistent way. As manual work is suscep-
tible to errors, an automated solution is a basic requirement
for the integration of identification as a service into existing
scientific workflows.

4. PRESERVING THE INFORMATION OF
THE SUBSET CREATION PROCESSES

For this reason we introduce three implementations for the
automated, unique identification of data, based on the data
citation concepts introduced by [18, 20] and on the RDA
recommendations for data citation [7]. This dynamic data
citation is based upon two generic principles: (1) In order
to be able to retrieve earlier versions of data, the under-
lying data source must be timestamped and versioned, i.e.
any addition to the data is marked with a timestamp, and
delete or update of a value is marked as delete and re-insert
with respective timestamps. (2) Subsets are identified via
a timestamped query, i.e. the query that was executed to
generate a subset is retained in a so-called query store to
enable its re-execution with the according timestamp. By
assigning persistent identifiers to this information, under-
standing and retrieving the subset at a later point in time
is possible. Integrating a query based identification service
improves the reproducibility of scientific workflows in small
and large scale scientific research likewise.

The three implementations of these principles for CSV
files presented below differ primarily in their way of storing
the data in the back end. Two approaches are based on Git,
a wide spread version control system for source code, one ap-
proach utilises a migration process into a database system.

The first approach uses a simple versioning scheme (Git)
leading to low system complexity, but also less flexibility
in subset generation and lower scalability. The second ap-
proach is also based on Git and utilises the branching model
allowing simultaneous editing of data sets. The third ap-
proach migrates the CSV file transparently into a relational
database, leading to higher complexity in system mainte-
nance but providing higher efficiency and flexibility. In all
three cases, the subset is identified via the query mecha-
nisms (i.e. database queries via an API or graphical inter-
face, scripting languages or via scrip-table SQL statements
operating on the CSV file). The queries used in all three
approaches are timestamped and stored, associated with a
PID. It is worth noting that we utilise a simplified PID ap-
proach in this paper, but the principle is compatible with
accepted solutions such as DOI or other PID systems.

4.1 Using Git for Creating Reproducible Sub-
sets

Recently source code management software and distributed
revision control systems such as Git5 or Subversion6 are
spreading from the software development departments to
the labs, as version control systems allow working collab-
oratively on files and trace changes. These systems have
been designed for plain text file formats, as their change de-
tection algorithms are based on the comparison of strings.
If each change of a file is committed into the repository, the
changes are traceable and previous versions of each can be
compared with the current revision.

Many different tools exist for manipulating CSV data,
ranging from command line applications such as awk, sed,
csvkit7 to scriptable statistical software such as R.

In the following example use case, users provide a list of
the Top5008 super computers in a CSV file as input for the
script. The list gets periodically updated and each change
is committed to the Git repository. As the users are only
interested in a subset, they filter the top 5 and select the
columns Rank, Site and Cores from the file. The subset will
be stored in the location provided as the second parameter to
the script. Listing 1 provides a simple example for creating
such a subset of CSV data using the mathematical software
R. Listing 2 shows the execution of the script in a Linux
shell.

Listing 1: Rscript for Subsetting
Create a subset o f the
top 5 o f the Top500 l i s t
args <− commandArgs (t r a i l i n gOn ly = TRUE)
inputDatasetPath=args [1]
outputSubset=args [2]
dataset <− read . csv (inputDatasetPath ,

header=TRUE)
subset <− subset (dataset ,

Rank<=5, s e l e c t=c (Rank , S ite , Cores))
wr i te . csv (subset , f i l e=outputSubset)

Listing 2: Executing the Script
E x e c u t e t h e R s c r i p t and
o b t a i n a s u b s e t f r om t h e p r o v i d e d CSV f i l e
/ usr /bin /Rscr ipt top5−subset . r \
/media/Data/Git−r epo s i t o r y / \

supercomputing/ supercomputer . csv \
/media/Data/Git−r epo s i t o r y / \

supercomputing/ supercomputer−top5 . csv

5https://git-scm.com/
6http://subversion.apache.org/
7http://csvkit.readthedocs.org/en/0.9.1/
8www.top500.org

We store these scripts in Git to retrieve the very same data
set again, by executing the proper version of a script against
the correct version of the data set. To do so, we store the
CSV file name and location and the execution timestamp
in a metadata/landing page file, which is also stored in the
Git based query store. Each query gets a PID assigned,
which serves as file name of the according metadata file in
the query store, which allows retrieving the data later by
resolving the PID to the file name.

We implemented a prototype based on the Eclipse JGit
Java library9, which provides the Git client functionality and
offers a low level API for the interaction with the repository.
Revisions of the data set are committed to the repository,
where Git stores a commit hash and the timestamp of the
update. If users want to retrieve a subset again at a later
point in time, they first retrieve the metadata file from the
Git system using the PID as the file name. This file then
provides the file name of the CSV data set and the execution
timestamp of the query. In the next step, the system tra-
verses the revision tree with the RevWalk object and builds
a revision graph based on the commit dates10. We filter the
commits and select the closest timestamp, which was valid
before the execution of the script11. This revision was valid
during the execution of the original query. We fetch this ver-
sion from the repository and re-execute the R script against
the versioned data set, as depicted in Figure 1.

Figure 1: The CSV Subsetting Workflow with Git

For making this process reproducible, the user commits
both, the CSV data file and the R script into the Git repos-
itory. The metadata files are committed into the Git repos-
itory in a separate PID folder. This folder contains all PID
identified metadata files of reproducible data sets, using the
PID as the file name. This allows us establishing a unique

9https://eclipse.org/jgit/
10Code snippet: https://gist.github.com/stefanproell/
b38e496a1259472c75f0

11Code snippet: https://gist.github.com/stefanproell/
34f8ac3fb5b63599976f

link between the PID and the metadata file, and by the tran-
sitivity, also with the data and the scripts. The metadata file
contains the execution time, application version, the script
and its parameters used as well as the re-execution steps
for each subset. The metadata required can be generated
automatically by using Git tools, no additional software de-
pendencies are required. Listing 3 shows an example for the
collected metadata and the references to versioned data and
script files.

Listing 3: The Metadata File
PID=1234/ a b c d e f g h
R e p o s i t o r y P a t h =/med i a / Data / Gi t−R e p o s i t o r y
E x e c u t i o n T im e =2015−09−30 :11 : 07 : 09
S u b s e t T o o l =R s c r i p t i n g f r o n t−end v e r s i o n 3 . 2 . 2 (2015−08−14)
S u b s e t T o o l P a t h =/ u s r / b i n / R s c r i p t
I n p u t S c r i p t P a t h = s u p e r c om p u t i n g / t o p 5− s c r i p t . r
I n p u t S c r i p t H a s h= b e f 5 d . . . d 7 8 61 : s u p e r c om p u t i n g / t o p5− s c r i p t . r
D a t a s e t P a t h= s u p e r c om p u t i n g / s u p e r c om p u t e r . c s v
Da t a s e t C omm i t H a s h=a c a e d . . . 4 c f 9 c : s u p e r c om p u t e r . c s v
O u t p u t P a t h =/ tmp / s u p e r c omp u t e r−t o p 5 . c s v

O r i g i n a l e x e c u t i o n :
/ u s r / b i n / R s c r i p t s u p e r c om p u t i n g / t o p 5− s c r i p t . r \
/ med i a / Data / Gi t−r e p o s i t o r y / s u p e r c om p u t i n g / s u p e r c om p u t e r . c s v \
/ tmp / s u p e r c omp u t e r−t o p 5 . c s v

Recommended re−e x e c u t i o n
R e t r i e v e s c r i p t
g i t −−g i t−d i r=/media/Data/Git−Repos itory / . g i t / \
show bef5d . . . d7861 : supercomputing/top5−s c r i p t . r \
> /tmp/ reproduced−data se t s /top5−s c r i p t . r
R e t r i e v e d a t a s e t
g i t −−g i t−d i r=/media/Data/Git−Repos itory / . g i t / \
show 47bed . . . b9792 : supercomputing/ supercomputer . csv \
> /tmp/ reproduced−data se t s / supercomputer . csv
Re x e c u t e
/ usr /bin /Rscr ipt supercomputing/top5−s c r i p t . r \
/tmp/ reproduced−data se t s / supercomputer . csv \
/tmp/ reproduced−data se t s / supercomputer−top5 . csv

The method we proposed is a simple way of storing repro-
ducible data sets within Git repositories. The format of the
metadata file serves as documentation and is machine ac-
tionable, as it allows retrieving the subset by executing the
script file. The metadata can be parsed and used in a land-
ing page, for increasing the readability for human users. The
method we proposed works well for simple scripts, which are
not depending on processing chains with user interactions.
It is designed to support one user per time per data set and
implements a evolution pattern for each data set.

Note that in order for this approach to work, the repos-
itory has to ensure that the access/scripting language used
to identify the subset is maintained. We thus recommend
to only support subsetting functionality with a clearly and
unambiguously defined semantic. All complex processing
(e.g. data analysis, visualisation, etc.) should happen in
subsequent processing scripts to keep the complexity of the
long-term stability manageable. Considering more complex
scenarios blurs the border between reproducible data sets
and process preservation.

In addition to the R-based (or, in fact, any similarly struc-
tured script-like interface) we also provide support for sub-
setting using an SQL-like query language that can be ex-
ecuted against CSV files via the CSV2JDBC12 library for
Java, which allows retrieving subsets from CSV files via SQL
statements. As both CSV and SQL are based on a tabular
view of the data, CSV data can be easily mapped into a
relational database table. Hence the translation process of
a CSV subset selection process can be mapped to an SQL
query. Figure 2 shows this transition.

When a user wants to create an identifiable subset, we
store the selected columns, the filter parameters and the
sorting information in the query store. We preserve the SQL

12http://csvjdbc.sourceforge.net/

Figure 2: CSV Subsetting and SQL Queries

statement used for obtaining the subset in the first place.
Additionally, we store the CSV file name and location and
the execution timestamp in a metadata/landing page file,
also stored in the Git based query store. As each metadata
file has the unique PID as file name, the query can be re-
executed based on the versioned CSV data set.

4.2 Using Git branching to separate data and
queries

In Section 4.1 we introduced an approach on how to store
CSV data and metadata files in different folders in a Git
repository. Furthermore we explained how to retrieve the
metadata and CSV data files in order to re-execute the
queries on the subsetted data. In this Section we will present
a second approach to store and retrieve the files, which
brings several advantages in a collaborative work environ-
ment.

When working with Git in a shared environment the con-
cept of branching is the recommended best practise for al-
lowing multiple researchers to work with different states of
the data or files at the same time. A branch allows re-
searchers to work with a specific version of data (or files)
without distracting others. After the work has been com-
pleted (e.g. a subset has been created), the data can be
merged with the main line or other branches again. At a
certain point these branches are then merged together to a
single branch to generate a common state.

C0 C1 C2 C5

C3 C4

C0 C1 C2 C3

query execution

Figure 3: Commit graph without & with branches

Figure 3 shows two commit graphs. The upper graph rep-
resents commits to the repository done on a single branch,
as described in Section 4.1. The graph below represents
a repository were after commit C1 a second branch was
opened. The subsequent commits C3 and C4 were committed
to the second branch. Commit C5 is a merge commit where
the two branches are merged together to a single branch.

If a query was executed at the time, that is marked by the
red arrows in Figure 3, the algorithm introduced in Section
4.1 works differently on the two graphs, if it is re-executed
at a time after commit C5. In the repository represented by
the upper graph the algorithm returns the correct commit
C2. In the repository represented by the lower graph the
query would return commit C4 instead of C2 because it has
a later commit date.

To solve this issue we need to change two aspects of the

prior solution. First we need to save the CSV and metadata
files in two separated branches instead of different directo-
ries. Second we change the algorithm to retrieve the data
based on the timestamp to an approach were the specific
commit hash is used.

Listing 4: Creating the CSV and metadata branch
Git g i t = new Git (r epo s i t o r y) ;

// C r e a t i n g t h e ma s t e r b r a n c h i f i t d o e s n ’ t e x i s t
ObjectId head = repo s i t o r y . r e s o l v e (” r e f s /heads/master ”) ;
i f (head != null) { return ; }

// C r e a t i n g t h e i n i t i a l commi t on t h e b r a n c h
g i t . commit () . setMessage (” I n i t i a l commit ”) . c a l l () ;

S t r ing readmeFileName = ”README.md” ;
St r ing [] t ext = new Str ing [] {”DO NOT DELETE DIR”} ;
F i l e s . wr i t e (Paths . get (getWorkingTreeDir () ,

readmeFileName) ,
Arrays . a sL i s t (text)) ;

g i t . add () . addFi l epattern (readmeFileName) . c a l l () ;
PersonIdent personIdent =

new PersonIdent (”Jane Doe” , ”doe@gmail . com”) ;
g i t . commit () . setMessage (”README.md”) . setAuthor (personIdent)

. c a l l () ;

// C r e a t i n g t h e o r p h a n e d q u e r i e s b r a n c h i f i t
// d o e s n ’ t e x i s t
ObjectId head = repo s i t o r y . r e s o l v e (” r e f s /heads/ que r i e s ”) ;
i f (head != null) { return ; }

// C r e a t i n g t h e i n i t i a l commi t on t h e b r a n c h
g i t . checkout () . setName (”que r i e s ”) . setOrphan (true)

. c a l l () ;
g i t . commit () . setMessage (” I n i t i a l commit ”) . c a l l () ;

If the CSV and metadata files are saved in the same
branch, as in the approach described above, the history of
CSV commits would be cluttered by the commits of the
metadata. We therefore create a dedicated branch for the
data and the queries.

Q0 Q1 Q2

master

queries

D0 D1 D2 D5

D3 D4

Figure 4: CSV(master) and metadata branch
(queries)

Usually branches in Git share a common commit as an-
cestor, which means that the branches also share the same
history up to this point. In Figure 3 the common ances-
tor is labeled as C1. Git also supports orphaned branches,
where the the diverging branch gets a new commit as start-
ing point for the history. The commit graphs of a repository
with this configuration are displayed in Figure 4. In order
to clearly separate the branches and their history, we create
the query branch as an orphaned branch. Listing 4 shows
how the branches for the CSV data files and the metadata
files are created in Java.

Listing 5: Saving query files in the queries branch
Git g i t = new Git (r epo s i t o r y) ;
S t r ing pid = query . getPid () . g e t I d e n t i f i e r () ;
PersonIdent personIdent =

new PersonIdent (”Jane Doe” , ”doe@gmail . com”) ;
St r ing message = ”Created query f i l e f o r PID=” + pid ;

// B u i l d i n g t h e SHA1 h a s h f o r t h e PID
Str ing f i leName = Dige s tUt i l s . sha1Hex (pid) + ” . query ” ;

// R e t r i e v i n g t h e q u e r i e s b r a n c h
g i t . checkout () . setName (” r e f s /heads/ que r i e s ”) . c a l l () ;

Path f i l ePa th = Paths . get (getWorkingTreeDir () ,
f i leName) ;

Prope r t i e s p r op e r t i e s = writeQueryToPropert ies (query) ;
p r op e r t i e s . s t o r e (F i l e s . newBufferedWriter (f i l ePa th) , ””) ;

// Add i n g t h e m e t a d a t a f i l e t o t h e r e p o s i t o r y
g i t . add () . addFi l epattern (f i leName) . c a l l () ;

// Comm i t t i n g t h e m e t a d a t a f i l e
g i t . commit () . setMessage (message) . setAuthor (personIdent)

. c a l l () ;

With the two branches created we can now change the al-
gorithm to store the metadata files and retrieve the datasets
on which the queries are executed on. Figure 4 should
thereby serve as an example of a repository with a mas-
ter and a queries branch, as well as a branch that contains
two CSV file commits on a third branch that was merged
at a point later in time than the query commit Q2. In the
figure the commits Q1 and Q2 refer to the CSV file commit
D1 as expected. However, the query commit Q2 refers to the
CSV file commit D2 as the third branch was not visible to
the application at the time of the query execution. For the
further explanation the labels of the commits should also
represent the hash values of the commits.

Listing 5 shows the corresponding code to save a metadata
file in the repository. Firstly the PID provided by the user
is hashed with SHA-1 to a string that can be used as a
file name. We do this because PIDs could contain special
characters, that are not permitted in a file name. Although
we are aware of the probability of hash collisions, we chose
SHA-1 because Git uses the same algorithm to calculate the
hashes of the committed files and thus limits our approach
in the same way. Secondly the previously created query
branch is checked out and the contents of the metadata file
are written along with the commit hash of the latest revision
in the data branch. In case of Figure 4 the saved commit
hash in the metadata file would be D2. In a last step the
metadata file itself is committed to the query branch which
results in commit Q2. The structure and history of the CSV
data branch and the metadata branch do not interfere each
other.

Listing 6: Retrieving the dataset commit and re-
executing the query
Str ing workingTreeDir = getWorkingTreeDir () ;
Git g i t = new Git (r epo s i t o r y)) ;
// C h e c k i n g o u t t h e q u e r y b r a n c h and
// l o a d i n g t h e q u e r y
g i t . checkout () . setName (” r e f s /heads/ que r i e s ”) . c a l l () ;
Path path = Paths . get (workingTreeDir ,

D i g e s tUt i l s . sha1Hex (pid)
+ ” . query ”) ;

Prope r t i e s p r op e r t i e s =
p rop e r t i e s . load (F i l e s . newBufferedReader (path))

// E x t r a c t i n g t h e commi t h a s h f r om t h e m e t a d a t a f i l e
Query query =

new DefaultQuery (p r op e r t i e s . getProperty (”commit ”)) ;
S t r ing r e v i s i o n = query . getCommit () . ge tRev i s i on Id () ;

// R e t r i e v i n g t h e c o r r e c t commi t t h a t
// c o n t a i n s t h e d a t a s e t
g i t . checkout () . setName (r e v i s i o n) . c a l l () ;
ObjectId head = repo s i t o r y . r e s o l v e (Constants .HEAD) ;

// Re−e x e c u t i n g t h e q u e r y on t h e d a t a s e t
TableModel tableModel =

retr ieveDatasetForQuery (workingTreeDir ,
query . getQuery () ,
head) ;

Listing 6 shows how the queries are retrieved and re-
executed on the dataset. The user first provides the PID
via the web application which is then hashed to get the file
name of the metadata file. The next step is to checkout the
query branch and read the metadata file identified by the
hashed PID. From the metadata the commit hash and file
name of the CSV data file can be extracted. In the exam-

ple depicted in Figure 4 we would get the hash value D2.
We then checkout the exact commit that is identified by the
hash value. This way we restore the CSV data file as it was
at the time the query was executed the first time. At this
point we then can re-execute the query on the dataset.

Because the metadata files store the unique commit hash
of the CSV data file in the repository, at the time when the
query is stored and executed, the commits can not get mixed
up when two or more dataset branches are merged together
in advance to the approach that was based on timestamps.
As mentioned in the beginning of this section, due to the
solution of separated CSV data and matadata file branches
as well as a metadata retrieval based on commit hashes this
approach is better suited when working in a collaborative
environment. We implemented a prototypical web applica-
tion13 as a proof of concept.

4.3 Reproducible Subsets Based on Migration
and Database Queries

One major disadvantage of CSV files is the lack of native
support for subsetting, i.e. selecting only a specific set of
rows and columns. While the Git approach is suitable for
smaller scale files, for larger data files native support would
be preferable, allowing to extract only smaller files from a
repository in the first place, rather than having to extract
all data and performing the subsetting afterwards.

Our third implementation still transparently provides CSV
files for the researcher, but internally utilises the advantages
of a database management system which takes care of ver-
sioning the data. Users upload their CSV files via a Web
based interface and they can retrieve CSV file which are
created on demand based on queries. We implemented a
two phased migration process for inserting the data into a
MySQL 5.7 database management system. Figure 5 shows
the interface of our prototype solution with three selected
columns.

In the first phase, the CSV file parsed and a table schema
based on the file structure is created. CSV header names
(i.e. the first row in the CSV file) serve as column names
for the table. In cases where a CSV schema14 file is avail-
able, the data type can be specified for the columns within
the database table. If no schema is available, the data in
each column can be analysed and heuristics can be used to
determine an appropriate data type (date, numeric, string,
etc.), or all columns can simply be interpreted as text strings
(VARCHAR columns). By parsing the file once, columns
containing potential identifiers can be detected. We use
these identifiers as primary keys for differentiating between
records. Thus after parsing, the user is presented with a list
of columns which only contain unique values, these columns
are the primary key candidates. If no candidate is available,
this can either be an indicator for duplicate records in a CSV
file or the set simply does not provide unique columns which
could serve as identifiers, a sequence number column gener-
ated automatically by the system is appended to the data
set for internal use. Each newly generated table is expanded
by one column for timestamps and one column storing the
events (INSERTED, UPDATED, DELETED). Having the
two additional columns available allows implementing a ver-
sioning scheme as described in [19]. In the second phase,

13https://github.com/Mercynary/recitable
14http://digital-preservation.github.io/csv-schema/csv-
schema-1.0.html

Figure 5: An Interface for Creating Reproducible
Subsets

the CSV file is read row by row and the data is inserted
into the database table. For each newly added record, the
system automatically inserts the timestamp and marks the
data as inserted.

For adding data to the set, users can provide CSV files
with the same structure and upload them into the system.
Header names can serve for checking whether the file still has
the same structure and the column type heuristics can be
applied for checking if the column type remained the same.
During the upload, the file is parsed and the records are
inserted into the data set, where the primary key column
defined in the database ensures that updates can be de-
tected. In cases where the internal sequence number serves
as primary key, detecting existing records is based on the
uniqueness of the given combination of all columns, except
the sequence number per record. These are skipped during
the parsing, with only new records being added to the table.

Upon the upload of a file containing changes, old records
gets marked as updated and the updated version of that
record gets inserted as a new version with the current times-
tamp and the INSERTED mark. Obviously, detecting which
record to update only works if a primary key is present in
the updating file. In case where no such unique column is
available, researchers can download the current version of
the data set including the sequence number column. By
updating this file, for instance by using some spreadsheet
software, the sequence number can be preserved and used
as a matching column.

The query store is implemented as a separate database
schema, providing tables for storing the metadata for re-
trieving the queries at a later point in time. The query
metadata includes source table, query parameters, execution
time and the persistent identifiers assigned to the query. As

soon as the data has been migrated into the RDBMS, the
advantages of the query based mechanism can be used for
identifying specific subsets of research data. This allows to
re-execute the query and map the timestamp of the query
execution time against the versioned data set. The subset
which is defined by the information stored in the query store
can then be retrieved on demand.

5. EVALUATION OF THE DATA CITATION
APPROACHES FOR LONG TAIL
RESEARCH DATA

Versioning data sets with Git is easy to integrate and com-
monly recognised as good practice for text based data for-
mats. The overhead created by the Git repository is low and
does not require sophisticated server infrastructure. The
Git based approaches can therefore easily be implemented
in long tail data settings. Further more it can be integrated
into existing processing pipelines, adding reproducibility for
the data input and output processing steps.

Instead of adding subsets directly into the Git repository
as new files, the query string or script can be used for re-
trieving the data from the versioned data set. The query
or scripts respectively are versioned as well and thus can be
mapped to a specific version of a subset. As the version of
the data set can be obtained from the repository, the like-
wise versioned query can be re-executed without any mod-
ifications. The mechanism can be applied to any scripting
language, as long as the required commands and parameters
are stored in the query store.

Git utilises a line based approach for interpreting differ-
ences in versions of data. Thus the traceability of changes
between two versions is limited, if the granularity is below
row level. Sorting for instance can hardly be differentiated
from updating records, which results in the deletion and
subsequent addition of a record into the file.

Re-ordering a CSV file by changing the sequence of columns
also leads to a completely different file, as all of the records
are considered as deleted and new records are detected to be
added. For this reason different versions of one data set can-
not be compared reliably without additional tools, leading
to less-efficient utilisation of storage. On the other hand, as
CSV files tend to be moderately-sized, this does not consti-
tute a major limitation.

Similarly, for retrieving a subset, the entire CSV file first
has to be checked out of the repository before the appropri-
ate subset can be extracted by running the original script.
While this might be undesirable in massive-scale data set-
tings it is unlikely to cause major problems in typical set-
tings employing CSV files.

These limitations of the Git based approaches are due to
the focus of Git on source code rather than data files. The
Git approaches allow utilising one single versioning system
for both, code and data. Therefore, no complex infrastruc-
ture or maintenance is required and the integration of the
data citation solution into existing workflows suitable for
any kind of ASCII data files and scripting languages for
retrieving the subsets requires low overhead. Subsets can
be compared across different versions by creating delta files
(also known as diffs) and the differences can be visualised or
extracted.

To overcome the limitations of the Git based data citation
approach, a RDBMS as backend provides additional flexibil-

ity at the cost of complexity. The data needs to be imported
into the database system, which is responsible for version-
ing both, the data and the queries including their metadata.
Subsets can be compared across different versions, simply
by re-executing the stored query with different timestamps.
Differences can be made visible by comparing the returned
result sets and exporting the differences. Handling alterna-
tive sortings or a different sequence of the columns of a data
set can be easily handled by rewriting queries, without the
need of changing the underlying data set.

Advanced database technologies support very large data
sets and provide a higher performance than the file based
approaches. Using a graphical interface, users can select
and re-order columns in the data set, filter and sort the
rows according to specific criteria, much as they are used
to work with data in spreadsheet programs. Rewriting the
queries for retrieving the version valid at a specific times-
tamp is a necessity, but can be automated by intercepting
the commands from the interface. On the downside migrat-
ing structured data into database management systems adds
an additional layer of complexity.

6. OUTLOOK AND CONCLUSIONS
In this paper we present three methods for the precise

identification of arbitrary subsets of CSV files even when
these data files are evolving over time. The three methods
have in common that they allow to make specific subsets of
data citable, by assigning a PID to the version of the data
set, which was valid during the selection process of the sub-
set. Additionally, we store the query or script respectively,
which created the subset in a versioned fashion. We estab-
lish a link between the versioned data set at a specific time
and the query as it was executed at that point in time. Being
able to reproduce the process of subset creation allows us to
shift the identification mechanism from data set level to the
query level. This produces much less storage overhead as
the duplication of data is avoided. Storing query metadata
does not require significant storage compared to versioned
subsets of data.

The solutions we propose have been developed with a fo-
cus on simplicity, low overhead, low maintenance and the
ease of use in various research settings. The steps neces-
sary to create citable subsets can be fully automated, re-
lieving the researcher from the burden of individual data
management, i.e. manually maintaining multiple copies of
data files. The approaches can be used in combination with
a centralised repository or individually at the researchers
work station.

The first two approaches rely on an underlying Git reposi-
tory to be used for data storage and for providing versioning
capabilities in long tail research data settings. The subset-
ting is performed by scripts which create a subset from a
data set. Both, the data and also the scripts required for
creating the subset are stored in a Git repository. Addi-
tional metadata allows to re-create a subset as it was at any
given point in time. Descriptive information can be added,
which allows human beings to understand how a subset was
created which further improves the reprodicibility of data
driven experiments. The first approach is simplistic, equip-
ping researchers with a simple yet powerful method for cre-
ating citable data sets, by storing the data and the script
in a dedicated repository in a linear fashion. Each subset
becomes identifiable with a PID. The second approach adds

parallelism to the approach and allows several researchers
to simultaneously work with data sets without distracting
each other. The results can be compared and easily shared.

In the third implementation, the CSV data is migrated
into a relational database. Subsets can be generated either
directly via an API accepting SQL queries, or via a graphical
interface mimicking a spreadsheet program. By storing the
data as well as the subsetting information in a versioned
fashion in a database system, subsets from very large data
sets can be made citable in a efficient way. Additionally,
the proposed methods allow comparing different versions of
the same subset more easily and allow generating subsets
with the same characteristics also from newly added data.
Storing the query allows retrieving in fact any subset version
of evolving data and enhances the reproducibility of data
driven research in larger scale settings.

Acknowledgement
Part of this work was co-funded by the research project
DEXHELPP, supported by BMVIT, BMWFW and the state
of Vienna, and COMET K1, FFG - Austrian Research Pro-
motion Agency.

7. REFERENCES
[1] Tony Hey, Stewart Tansley, and Kristin Tolle. The

Fourth Paradigm: Data-Intensive Scientific Discovery.
Microsoft Research, 2009.

[2] Juha K Laurila, Daniel Gatica-Perez, Imad Aad,
Olivier Bornet, Trinh-Minh-Tri Do, Olivier Dousse,
Julien Eberle, Markus Miettinen, et al. The mobile
data challenge: Big data for mobile computing
research. In Pervasive Computing, number
EPFL-CONF-192489, 2012.

[3] Derek John de Solla Price, Derek John de Solla Price,
Derek John de Solla Price, and Derek John
de Solla Price. Little science, big science... and
beyond. Columbia University Press New York, 1986.

[4] Christine L Borgman, Jillian C Wallis, and Noel
Enyedy. Little science confronts the data deluge:
habitat ecology, embedded sensor networks, and
digital libraries. International Journal on Digital
Libraries, 7(1-2):17–30, 2007.

[5] Geir Kjetil Sandve, Anton Nekrutenko, James Taylor,
and Eivind Hovig. Ten simple rules for reproducible
computational research. PLoS Comput Biol,
9(10):e1003285, 10 2013.

[6] Andreas Rauber, Ari Asmi, Dieter van Uytvanck, and
Stefan Proell. Data Citation of Evolving Data -
Recommendations of the Working Group on Data
Citation. https://rd-alliance.org/rda-wgdc-
recommendations-vers-sep-24-2015.html, September
2015. Draft - Request for Comments.

[7] Andreas Rauber, Ari Asmi, Dieter van Uytvanck, and
Stefan Proell. Identification of Reproducible Subsets
for Data Citation, Sharing and Re-Use. Bulletin of
IEEE Technical Committee on Digital Libraries, 2016.
Accepted for Publication. URL:
https://rd-alliance.org/system/files/documents/RDA-
Guidelines TCDL draft.pdf.

[8] Heather A Piwowar and Todd J Vision. Data reuse
and the open data citation advantage. PeerJ, 1:e175,
2013.

[9] Mark P Newton, Hailey Mooney, and Michael Witt. A
description of data citation instructions in style
guides. 2010.

[10] Jochen Kothe Hans-Werner Hilse. Implementing
Persistent Identifiers: Overview of concepts, guidelines
and recommendations. Consortium of European
Research Libraries, London, 2006.

[11] Ruth E Duerr, Robert R Downs, Curt Tilmes, Bruce
Barkstrom, W Christopher Lenhardt, Joseph Glassy,
Luis E Bermudez, and Peter Slaughter. On the utility
of identification schemes for digital earth science data:
an assessment and recommendations. Earth Science
Informatics, 4(3):139–160, 2011.

[12] Norman Paskin. Digital Object Identifier (DOI)
System. Encyclopedia of library and information
sciences, 3:1586–1592, 2010.

[13] Tobias Weigel, Michael Lautenschlager, Frank
Toussaint, and Stephan Kindermann. A framework for
extended persistent identification of scientific assets.
Data Science Journal, 12(0):10–22, 2013.

[14] John F Roddick. A survey of schema versioning issues
for database systems. Information and Software
Technology, 37(7):383–393, 1995.

[15] R. Chatterjee, G. Arun, S. Agarwal, B. Speckhard,
and R. Vasudevan. Using data versioning in database
application development. In Software Engineering,
2004. ICSE 2004. Proceedings. 26th International
Conference on, pages 315–325, May 2004.

[16] Divyakant Agrawal, Amr El Abbadi, Shyam Antony,
and Sudipto Das. Data management challenges in
cloud computing infrastructures. In Databases in
Networked Information Systems, pages 1–10. Springer,
2010.

[17] Peter Buneman, Sanjeev Khanna, Keishi Tajima, and
Wang-Chiew Tan. Archiving scientific data. ACM
Trans. Database Syst., 29(1):2–42, March 2004.

[18] Stefan Pröll and Andreas Rauber. Citable by Design -
A Model for Making Data in Dynamic Environments
Citable. In 2nd International Conference on Data
Management Technologies and Applications
(DATA2013), Reykjavik, Iceland, July 29-31 2013.

[19] Stefan Proell and Andreas Rauber. A Scalable
Framework for Dynamic Data Citation of Arbitrary
Structured Data. In 3rd International Conference on
Data Management Technologies and Applications
(DATA2014), Vienna, Austria, August 29-31 2014.

[20] Stefan Pröll and Andreas Rauber. Data Citation in
Dynamic, Large Databases: Model and Reference
Implementation. In IEEE International Conference on
Big Data 2013 (IEEE BigData 2013), Santa Clara,
CA, USA, October 2013.

[21] Matthias Schwab, Martin Karrenbach, and Jon
Claerbout. Making scientific computations
reproducible. Computing in Science & Engineering,
2(6):61–67, 2000.

