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Executive Summary 
Multi-dimensional arrays (also known as raster data or gridded data) play a core role in many, if not all 

science and engineering domains where they typically represent spatio-temporal sensor, image, simulat-

ion output, or statistics “datacubes”.  However, as classic database technology does not support arrays 

adequately, such data today are maintained mostly in silo solutions, with architectures that tend to 

erode and have difficulties keeping up with the increasing requirements on service quality. 

Array Database systems attempt to close this gap by providing declarative query support for flexible ad-

hoc analytics on large n-D arrays, similar to what SQL offers on set-oriented data, XQuery on hierarchical 

data, and SPARQL or CIPHER on graph data. Today, Petascale Array Database installations exist, employ-

ing massive parallelism and distributed processing. Hence, questions arise about technology and stand-

ards available, usability, and overall maturity. 

To elicit the state of the art in Array Databases, Research Data Alliance (RDA) has established the Array 

Database Assessment Working Group (ADA:WG) as a spin-off from the Big Data Interest Group, technic-

ally supported by IEEE GRSS. Between September 2016 and March 2018, the ADA:WG has established an 

introduction to Array Database technology, a comparison of Array Database systems and related tech-

nology, a list of pertinent standards with tutorials, and comparative benchmarks to essentially answer 

the question: how can data scientists and engineers benefit from Array Database technology?  

Investigation shows that there is a lively ecosystem of technology with increasing uptake, and proven 

array analytics standards are in place. Tools, though, vary greatly in functionality and performance as in-

vestigation shows. While systems like rasdaman are Petascale proven and parallelize across 1,000+ 

cloud nodes, others (like EXTASCID) still have to find their way into large-scale practice. In comparison to 

other array services (MapReduce type systems, command line tools, libraries, etc.) Array Databases can 

excel in aspects like service friendliness to both users and administrators, standards adherence, and 

often performance. As it turns out, Array Databases can offer significant advantages in terms of flexibil-

ity, functionality, extensibility, as well as performance and scalability – in total, their approach of offer-

ing “datacubes” analysis-ready heralds a new level of service quality. Consequently, they have to be con-

sidered as a serious option for “Big DataCube” servicees in science, engineering and beyond. 

The outcome of this investigation, a unique compilation and in-depth analysis of the state of the art in 

Array Databases, is supposed to provide beneficial insight for both technologists and decision makers 

considering “Big Array Data” services in both academic and industrial environments.  
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1 Introduction 
 

"The speed at which any given scientific discipline advances will depend  

on how researchers collaborate with one another, and with technologists,  

in areas of eScience such as databases[...]" -- The Fourth Paradigm 

1.1 Why Do We Need "Arrays"? 
The significant increase in scientific data that occurred in the past decade – such as NASA’s archive 

growth from some hundred Terabytes in 2000 [24] to 32 Petabytes of climate observation data [45], as 

well as ECMWF’s climate archive of 220 Petabytes [22] – marked a change in the workflow of 

researchers and programmers. Early approaches consisted mainly of retrieving a number of files from an 

FTP server, followed by manual filtering and extracting, and then either running a batch of computation 

processes on the user’s local workstation, or tediously writing and optimizing sophisticated single-use-

case software designed to run on expensive supercomputing infrastructures. This is not feasible any 

more when dealing with Petabytes of data which need to be stored, filtered and processed beforehand. 

When data providers discovered this they started providing custom tools themselves, often leading to 

silo solutions which turn out to erode over time and make maintenance and evolution hard if not 

impossible. An alternative finding attention only recently are database-centric approaches, as these 

have shown significant potential; meantime, we find both small institutions [35] and large data-centers  

[22] using modern database architectures for massive spatio-temporal data sets. 

Arrays - also called "raster data" or "gridded data" or, more recently, "datacubes" [8] - constitute an 

abstraction that appears in virtually all areas of science and engineering, and even beyond: 

 Earth sciences: 1-D sensor data, 2-D satellite imagery, 3-D x/y/t image timeseries and x/y/z 

subsurface voxel data, 4-D x/y/z/t climate and weather data; etc. 

 Life sciences: microarray data, image modalities like X-ray, sonography, PET, and fMRI delivering 

2-D and increasingly 3-D data about human and non-human brains and further organs; 2-D 

through 4-D gene expression data; etc. 

 Space sciences: optical and radio telescope data; 4-D x/y/z/t cosmological simulation output; 

planetary surface and subsurface data; etc. 

 Statistics: "Datacubes" are known since long in the context of Data Warehousing and OLAP [15] 

where, instead of spatial, abstract axes are defined, usually together with a time axis. A main 

difference to the above data is that statistical datacubes are rather sparse (say, 3% - 5% of the 

data space is occupied by values) whereas Earth, Space, and Life science and engineering data 

tend to be rather dense, often completely dense (i.e., most or all cell positions in the grid hold 

some non-null value). 

Fig. 1 gives an impression of the variety of different observed data specifically in Ocean science. 

Generally, arrays typically represent sensor, image, simulation, and statistics data of spatio-temporal or 

"abstract" dimensions. 

http://research.microsoft.com/en-us/collaboration/fourthparadigm/


 Array Databases Report  

 - p. 6 -  

 

Fig. 1. Integrating a variety of data sources and types in an Ocean Science Interoperability Experiment 
(source: OGC membership) 

1.2 Why Array Databases? 
For decades now, SQL has proven its value in any-size data services in companies as well as public ad-

ministration. Part of this success is the versatility of the query lanuage approach, as well as the degree of 

freedom for vendors to enhance performance through server-side scalability methods. Unfortunately, 

scientific and engineering environments could benefit only to a limited extent. The main reason is a 

fundamental lack in data structure support: While flat tables are suitable for accounting and product 

catalogues, science needs additional information categories, such as hierarchies, graphs, and arrays. The 

consequence of this missing support has been a historical divide been ”data” (large, constrained to 

download, no search) and ”metadata” (small, agile, searchable). 

Still, databases have worked out some key components of a powerful, flexible, scalable data manage-

ment; these principles have proven successful over decades1 on sets (relational DBMSs), hierarchical 

data (e.g., XML databases), graph data (e.g., ontology and graph databases), and now array databases 

are offering their benefits as well: 

 A high-level query language allows users (typically: application developers such as data scient-

ists) to describe the result, rather than a particular algorithm leading to this result. For example, 

a two-line array query typically would translate into pages of procedural code. In other words: 

                                                           
1
 Also NoSQL approaches, while initially denying usefulness of high-level query languages, are gradually (re-) 

introducing them – see MongoDB, Hive, Pig, etc. 
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users do not need to deal with the particularities of programming. The data center, conversely, 

has a safe client interface – accepting any kind of C++ or python code and running it inside the 

firewall is a favorite nightmare of system administrators. 

 Transparent storage management (“data independence”). While this idea sometimes still is 

alien to data centers which are used to knowing the location of each byte on disk this transpar-

ency has the great advantage of (i) simplifying user access and (ii) allowing to reorganize intern-

ally without affecting users – for example, to horizontally scale a service. And, honestly: in a 

JPEG file, do we know the location of a particular pixel? We can operate them well without 

knowing these details. 

 Concurrency and access control. Given that a large number and variety of users are querying 

large amounts of data it is indispensable to manage access. Avoiding inconsistencies due to par-

allel modifications of data is addressed by concurrency control with transaction support. Role-

based access control allows adjusting access for user groups individually. Particularly with 

arrays, granularity of access control must go below object level for selectively managing access 

to arbitrary areas within datacubes, essentially performing access control down to pixel level. 

Also, due to the high processing load that array queries may generate it is important to enforce 

quota. 

Array databases [9] provide flexible, scalable services on massive multi-dimensional arrays, consisting of 

storage management and processing functionality for multi-dimensional arrays which form a core data 

structure in science and engineering. They have been specifically designed to fill the gaps of the relation-

al world when dealing with large binary datasets of structured information and have gained traction in 

the last years, in scientific communities as well as in industrial sectors like agriculture, mineral resource 

exploitation etc. 1-D sensor data, 2-D satellite and medical imagery, 3-D image timeseries, 4-D climate 

models are all at the core of virtually all science and engineering domains. The currently most influential 

array database implementations are, in historical order, rasdaman [10][12][20][20][7][38] and SciDB 

[16][19]; Fig. 2 gives a brief outline on the historical development of this field. Each of them allows 

querying the data based on the array’s properties and contents using declarative languages that usually 

allow for a large degree of flexibility in both query formulization and internal query optimization tech-

niques. Processing of arrays is core functionality in such databases with large sets of operations, ranging 

from simple sub-setting up to statistics, signal and image processing, and general Linear Algebra. A first 

Array Database workshop has been held in Uppsala in 2011 [4]. 
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Fig. 2. Early history of Array Databases 

The remainder of this report is organized as follows. In the next section we introduce to the concepts of 

array querying. In Section X we provide a brief discussion of open data versus open source versus open 

standards. An overview on Array (database) standards is given in Section X, followed by an overview of 

technology currently available in Section X and a slate of publicly accessible array (database) services in 

Section X. In Section X we provide a technical comparison of the various technologies. Section X conclud-

es the report. 



 Array Databases Report  

 - p. 9 -  

2 Array Database Concepts 
This section can be skipped safely, it is helpful but not strictly necessary to understand the analysis 

provided lateron. 

2.1 The Array Model 
Formally, a d-dimensional array is a function a: D → V with a domain consisting of the d-fold 

Euclidean cross product of closed integer intervals: 

D = {lo1, …, hi1}  …  {lod, …, hid} with loi≤hii for 1≤i≤d 

where V is some non-empty value set, called the array’s cell type. Single elements in such an array we 

call cells. Arrays sometimes are popularly referred to as datacubes emphasizing the higher dimensions, 

from 3 onwards. Still, the concept encompasses all dimensions, including 1-D and 2-D (0-dimensional 

arrays constitute a border case which can be considered as a single value - it is more or less a matter of 

taste whether to consider them arrays or not).  

This understanding is identical to mathematics where vectors (or sequences) represent 1-D arrays, 

matrices form 2-D arrays, and tensors represent higher-dimensional arrays. 

Tomlin has established a so-called Map Algebra [43] which categorizes array operations depending on 

how many cells of an input array contribute to each cell of the result array; here is an excellent 

compressed introduction. While Map Algebra was 2-D and has been extended to 3-D lateron, AFATL 

Image Algebra [39] is n-dimensional by design. Array Algebra [11] has been influenced by AFATL Image 

Algebra when establishing a formal framework for n-D arrays suitable for a declarative query language. 

2.2 Querying Arrays 
Although array query languages heavily overlap there is not yet a common consensus on operations and 

their representation. For the brief introduction we rely on Array Algebra [11] because it is a powerful, 

minimal formal framework of well understood expressiveness and also forms the theoretical under-

pinning of the forthcoming ISO Array SQL standard, SQL/MDA (see standards section). In passing we 

note that array operations, being 2nd order with functions as parameters, introduce functionals. Array 

Algebra relies on only three core operators:  An array constructor, an aggregator, and an array sort oper-

ation (which we skip for this introduction). We introduce these in turn, based on the ISO SQL/MDA 

syntax. 

2.2.1 Deriving arrays 

The mdarray operator creates an array of a given extent and assigns values to each cell through some 

expression which may contain occurrences of the cell’s coordinate. Sounds complicated? Let us start 

simple: assume we want to obtain a subset of an array A. This subset is indicated through array coordin-

ates, i.e., we extract a sub-array. For a d-dimensional array this subset can be defined through a d-dim-

ensional interval given by the lower corner coordinate (lo1, ..., lod) and upper corner coordinate 

(hi1,...,hid), respectively. To create the subset array we write 
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mdarray [ x( lo1:hi1, ..., lod:hid ) ] 

elements a[x] 

This extraction, which retains the dimensionality of the cube, is called trimming. Commonly this is 

abbreviated as 

a[ lo1:hi1, ..., lod:hid ] 

We can also reduce the dimension of the result by applying slicing in one or more coordinates. This 

means, instead of the loi:hii interval we provide only one coordinate, the slice position si. Notably, if 

we slice d times we obtain a single value (or, if you prefer, a 0-D array), written as: 

mdarray [ x(s1, ..., sd) ] 

elements a[x] 

or in its shorthand 

a[ s1, ..., sd ] 

which resembles the common array cell access in programming languages. Fig. 3 shows some examples 

of trimming and slicing on a 3-D array. 

 

Fig. 3. Various types of subsetting from an array: trimming (left, which keeps the original dimension) and 
slicing (which reduces the number of dimensions, right) 

Now let as assume we want to change the individual cell values rather than doing extraction, for 

example deriving the logarithm of some input array of given domain extent D with axes ax and y: 

mdarray mdextent( D ) 

elements log( a[x,y] ) 

An example for a binary operator is addition of two images: 
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mdarray mdextent( D ) 

elements a[x,y] + b[x,y] 

In fact, any unary or binary operation defined on the input arrays’ cell types "induces" a corresponding 

array operation. For binary operations - also referred to as array joins - we require that both operand 

arrays share the same spatial extent so that the pairwise matching of array cells is defined. Syntactically, 

we abbreviate such marray operations so that the above example can be written as 

a + b 

With this simple rule we have obtained already all the well-known arithmetic, Boolean, exponential, and 

trigonometric operations. 

Extending binary to n-ary functions we find two practically useful operations, the case and concat 

operators. Following the syntax of SQL we can write an array case (or "if" operator) as in the following 

example which performs a traffic light classification of array values, based on thresholds t1 and t2: 

case 

  when a > t2 then {255,0,0} 

  when a > t1 then {0,255,255} 

              else {0,255,0} 

end 

Another useful operation is array concatenation. We define, for two arrays a with domain A and b with 

domain B, 

a concat b := mdarray  x in (A union B) 

              elements case 

                       when x in A then a[x] 

                                   else b[x] 

                       end 

Obviously, the union of the input domains must be a valid array domain again. It is straightforward to 

extend concatenation to an n-ary function provided the input array domains altogether form a valid 

array partition. 

2.2.2 Aggregating arrays 

All the above operations have served to derive a new array from one or more given arrays. Next, we 

look at the condenser which - in analogy to SQL aggregation - allows deriving summary values. The gen-

eral condenser iterates over an array covering the domain indicated and aggregates the values found; 

actually, each value can be given by a location-aware expression. The following example adds all cell 

values of a in domain D with axes x and y (which obviously must be equal to or contained in the domain 

of array a): 
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mdaggregate + 

over mdextent( D ) 

using a[x,y] 

This can be abbreviated as 

sum(a) 

Not all operations can act as condensers as they must be form a monoid in order for the aggregation to 

work. Common candidates fulfilling this criterion are sum, avg, min, max, exists, and forall. 

2.2.3 Operator combinations 

The operators illustrated can all be combined freely to form expressions of arbitrary complexity. We 

demonstrate this through two examples. 

Example 1: The matrix product of a and b, yielding an result matrix of size mp. 

mdarray  mdextent( i(0:m), j(0:p) ) 

elements mdaggregate + 

         over        mdextent( k(0:n) ) 

         using       a [ i, k ] * b [ k, j ] 

Example 2:  A histogram over an 8-bit greyscale image. 

mdarray  mdextent( bucket(0:255) ) 

elements mdcount( img = bucket ) 

This way, general operations from image / signal processing, statistics, and Linear Algebra (up to, say, 

the Discrete Fourier Transform) can be expressed. 

2.2.4 Array integration 

Some systems operate on arrays standalone, others integrate them into a host data model, typically: 

relations. Following ISO SQL we embed arrays into the relational model as a new column type which is 

shared by the majority of systems such as rasdaman, PostgreSQL, Oracle, and Teradata. This offers 

several practical advantages, such as a clear separation of concerns in query optimization and evaluation 

which eases mixed optimization [34]. For example, we can define a table of Landsat images as follows: 

create table LandsatScenes( 

    id: integer not null, 

    acquired: date, 

    scene: row( band1: integer, ..., band7: integer ) 

           mdarray [ 0:4999,0:4999] 

) 

which can be queried like this example shows: 

select  id, encode(  (scene.band1-scene.band2) 

                   / (scene.band1+scene.band2)), "image/tiff" ) 
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from    LandsatScenes 

where   acquired between "1990-06-01" and "1990-06-30" and 

        mdavg(scene.band3-scene.band4)/(scene.band3+scene.band4))>0 

A notable effect is that now data and metadata reside in the same information space and can be 

accessed and combined in one and the same query. Hence, in future the age-old distinction between 

data and metadata can be overcome. 

2.3 Array Database Architectures 

2.3.1 Storage 

Access patterns on arrays are strongly linked to the Euclidean neighborhood of array cells (Fig. 4), 

therefore it must be a main goal of any storage engine to preserve proximity on persistent storage 

through some suitable spatial clustering. It is common, therefore, to partition n-D arrays into n-D sub-

arrays called tiles [12] or chunks [40] which then form the unit of access to persistent storage. 

 

Fig. 4. n-D Euclidean neighborhood of array cells 

Obviously, the concrete partitioning chosen greatly affects disk traffic and, hence, overall query 

performance. By adjusting the partitioning – statically in advance or dynamically at query time – to the 

workloads, the number of partitions fetched from persistent storage can be minimized, ideally: to a 

single disk access (Fig. 5). The challenge is to find a partitioning which supports a given workload. For 

example, when building x/y/t remote sensing data cubes imagery comes in x/y slices with a thickness of 

1 along t. Time series analysis, on the contrary calls for cutouts with long time extent and (possibly) 

limited spatial x/y extent. 

While this principle is generally accepted partitioning techniques vary to some extent. PostGIS Raster 

allows only 2D x/y tiles and suggests tile sizes of 100x100 pixels [37]. Teradata arrays are limited to less 

than 64 kB [44]. SciDB offers a two-level partitioning where smaller partitions can be gathered in cont-

ainer partitions. Further, SciDB allows overlapping partitions so that queries requiring adjacent pixels 

(like in convolution operations) do not require reading the neighboring partitions [41]. In rasdaman, a 

storage layout sublanguage allows to define partitioning along several strategies [6]. For example, in 

“directional tiling” ratios of partition edge extents are indicated, rather than absolute sizes; this allows 

to balance mixed workloads containing, e.g., spatial timeslice extraction and temporal timeseries analys-
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is. In the “area of interest tiling” strategy, hot spots are indicated and the system automatically determ-

ines an optimal partitioning. 

 

Fig. 5. Sample tiling of 2-D and 3-D arrays (left) and  
rasdaman tiling strategies area-of-interest, regular, and directional (right) 

To quickly determine the partitions required – a typical range query – some spatial index, such as the R-

Tree, proves advantageous. As opposed to spatial (i.e., vector) databases the situation with arrays is 

relatively simple: the target objects, which have a box structure (as opposed to general polygons), 

partition a space of known extent. Hence, most spatial indexes can be expected to perform decently. 

Often, compression of tiles is advantageous [20]. Still, in face of very large array databases tertiary 

storage may be required, such as tape robots [40][38]. 

2.3.2 Processing 

When it comes to query evaluation it turns out that, in general, array operations are heavily CPU bound; 

this is contrary to relational query processing which typically is I/O bound. Some array operations are 

trivially parallelizable, such as cell-wise processing and combination (which Tomlin [43] calls “local” 

operations) and simple aggregations. These can easily be distributed both on local processing nodes like 

multicore CPUs and general-purpose GPUs and remote nodes, like servers in a cloud network. Others 

have to be carefully analyzed, transformed and sometimes even rewritten in different sets of operations 

to gain such parallelizable characteristics, e.g. joins on differently partitioned arrays, histogram 

generators and, in general, array constructors with non-serial access patterns. 

The following is a non-exhaustive list of optimizations proven effective in Array DBMSs: 

 Parallelization. The fact that array operations involve applying the same operation on a large 

number of values, and also the observation that tiles map naturally to CPU cores sometimes 

leads to the hasty conclusion that array operations per se are "embarrassingly parallel". While 

this holds for simple operations, such as unary induced operations like "log(a)", this is by far not 

true in general. Already binary operations like "a+b" pose challenges - for example, both oper-

and arrays can reside on different nodes, even data centers, and they may have an incompatible 

tiling which calls for advanced methods like Array Join [5]. Additional complexity, but also opp-

ortunities, comes with Linear Algebra operations ranging from matrix multiplication over QR 

decomposition up to Fourier Transform and PCA, to randomly pick a few examples. 

Parallelization across several cores in one compute node (effectively, a shared-all architecture) 

allows exploiting vertical scalability; distributed processing utilizes the same principle of sharing 
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workloads, but across several compute nodes (shared-nothing architecture) – in case of a cloud, 

typically homogeneous nodes sitting close by, in the case of federations among data centers 

heterogeneous nodes with individual governance and higher-latency network connections. Crit-

eria for splitting queries across multiple systems may include data location, intermediate results 

transfer costs, current resource availability, and several more. 

 Mixed hardware. Compiling queries into code for CPU, GPU, FPGA, etc. can greatly speed up 

processing time. However, mixed hardware evaluation poses non-trivial problems which still are 

under active research. 

 Approximative caching. Caching the results of final and intermediate processing steps helps sig-

nificantly in case where the same or similar queries come in frequently. For example, during dis-

asters there will be lots of queries on the disaster region, issued by mitigation forces and the 

general public. With arrays we encounter the particular challenge that these queries will likely 

not hit the exact same region, but will differ more or less on the area to be accessed. Hence, it is 

of advantage if the query engine can reuse also partially matching areas in arrays [31]. 

Generally, parallelization in Array Databases is not constrained to the rigid “Map() followed by Reduce()” 

pattern of Hadoop-style systems, but can look at each query individually. This opens up more opportun-

ities, but is often nontrivial to implement. In Array Databases – as in database technology in general – 

two main techniques are known for finding out how to best orchestrate an incoming query based on the 

speedup methods available in the system: 

 Query rewriting. This technique, which is long known in relational database query processing, 

looks at an incoming query whether it can be rephrased into an equivalent one (i.e., returning 

the same result), however, with less processing effort. To this end, the system knows a set of 

rewrite rules like “left hand side expression returns same result as right hand side, but we know 

right-hand side is faster”. Where do these rules come from? Actually, this is a nice example for 

the usefulness of a formal semantics of a language; Relational and Array Algebra naturally lead 

to algebraic equivalences which can be directly written into code. In the case of rasdaman, there 

are about 150 such rules currently.  

The following example (Fig. 6) illustrates the principle, with a rule saying “adding two images 

pixelwise, and then computing the average value, is equivalent to first computing the averages 

individually, and then add the result”. In the first case, array tiles have to be streamed three 

times in the server whereas in the second case there are only two tile streams – the final 

addition is over two scalars, hence negligible in cost. Bottom line, replacing an occurrence of the 

left-hand side pattern by the right-hand side pattern saves 1/3 of the computing effort. 

 

Fig. 6. Sample equivalence rule for array query rewriting: “avg(a+b)  avg(a)+avg(b)” 
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 Cost-based optimization attempts to find an efficient execution plan out of the - usually large - 

search space of possible plans for a given query. In contrast to query rewriting, this involves 

knowledge (i.e.: estimation) of the costs of processing. Parameters influencing costs include the 

number of tiles to be read from disk, location of tiles in case of a distributed system, the number 

and complexity of operations, and several more.  

Note that reformulating and compiling queries is not a time consuming task. Experience with rasdaman 

shows that the optimization steps altogether take about a millisecond. 

2.4 Client interfacing 
While "datacubes" represent a convenient logical view on massive multi-dimensional data this does not 

mean clients need to see data in such a shape. Very often, clients will do some extraction and 

aggregation, thereby reducing and changing dimensionality away from the original. More importantly 

even, users should be able to remain as much as possible within their comfort zone of well known tools - 

for example, simple map navigation should still be able through clients like OpenLayers and Leaflet, 

embedding into Web GIS should support tools like QGIS and ESRI ArcGIS, virtual globes like NASA 

WebWorldWind and Cesium should be supported, whereas high-end analytics calls for access to 

datacubes through R and python. 

2.5 Related Technology 
Array databases, by definition, are characterized by offering a declarative query language on n-D arrays. 

Such technology can e implemented in various ways - as will be demonstrated by the systems overview 

in the next section - each coming with its individual characteristics. However, we will also look beyond 

the pure Array Database category and give a glance at other array technology, including  

 array engines offering only procedural interfaces (rather than a query language), often 

implemented in some scripting language (e.g., python), rather than running directly compiled 

machine code (e.g., C++). Typically, these are constrained in functionality as users can only 

invoke the functions provided, but cannot compose them to larger tasks – hence, they lack the 

flexibility of databases. 

 Command-line tools which form possible components of array services, but do not constitute a 

complete service tool per se. Typically, these are useful for services inside a data center where 

data experts at the same time are experienced full-stack developers. 

 Libraries that provide array functionality, but do not constitute a server and do not have a query 

concept (but rather a procedural API). 

This way, we aim at providing a context for the novel category of Array Databases. 
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3 Open Data, Open Source, Open Standards 
In the era where openness has become highly valued we sometimes observe confusion about the mean-

ing and consequence of an "open X". We, therefore, briefly discuss three core terms heavily debated in 

the science data domain. Note that the goal is not to define or even explain in detail - this has been 

done many times elsewhere already -, but to specifically relate these three terms to each other. 

3.1 Open Data 
This addresses accessibility of data. Data are said to be open if they can be accessed without any 

restriction stemming from constrained user groups, etc. A related term is "Free Data" meaning that 

access is free of cost. 

An indirect obstacle to free access, aside and independently from organizational restrictions, can be the 

difficulty of access due to reasons such as uncommon data formats, unwieldy data granules (such as 100 

GB TIFF files), access interfaces requiring high technical backgrounds, or interfaces posing particular 

hardware requirements (high client-side hardware resource needs, high-bandwidth connection, etc). 

Hence, offering open data also has an implication on the ease of use of the data offered. In this context, 

an interesting and widely embraced initiative has been launched by the USGS Landsat team coining the 

term Analysis Ready Data. In this approach, data centers tentatively undertake high effort in preparing 

(homogenizing, restructuring, cleansing, etc.) data in a way that reduces such intrinsic obstacles to data 

access. 

3.2 Open Source 
This term refers to the software used, e.g., to serve or access data (i.e., servers and clients in Web-based 

information systems). By way of background, most programs are written by human developers in som 

ehigh-level language which is closer to human perception concepts than the computer's machine 

language - hence, programming becomes more efficient, less error prone, and resulting programs are 

better to maintain. For each language there are special programs - called compilers or interpreters - 

translating this "souce code" into "object code" which can be executed by a particular CPU. Note that for 

one and the same language different compilers may exist, and do so in practice - we will need this fact 

later. 

Obviously, the machine code is hard to understand for humans, as opposed to the high-level source 

code which is digestible at least by programming experts. Hence, source code allows to find out what a 

program really does - whether it does the right thing, does computations correctly and without flaws 

like undue rounding errors, does not contain malicious code, etc. Of course, detecting any such issue 

requires high effort by skilled programmers, so not everybody is able to benefit from the openness of 

the source code. 

Further, even open source code runs in the particular "environment" of the computer hosting the 

service. As such, the program will use external libraries whose source code may or may not be open, and 

it has been derived from the source code through a compiler which itself may or may not be open. 
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Hence, even when inspected by experts openness of the source code of the tool under consideration is 

not necessarily a guarantee for completely overseeing its effects. 

In particular, for data scientists (i.e., not computer scientists) it is generally not possible to verify the 

validity of open source code - and be it just for the lack of time to inspect all source code involved. 

Generally, speaking, both open source and proprietary software build and maintenance approaches 

have their individual advantages and disadvantages. In today's planetary software ecosystem we find a 

wide spectrum of business models, ranging from fully open source over mixed models (like dual license) 

to fully closed, proprietary software (such as license sales or leases) - and often we find them in 

combination (such as running open-source clients on closed-source MS-Windows). 

3.3 Open Standards 
In Information Technology, standards typically establish data formats and interfaces between software 

components so that software artifacts written by different, independent producers (say, different comp-

anies or different departments within a company) still can communicate and perform a given task joint-

ly. Building software based on only interface knowledge and without knowledge about the internals of 

how a component establishes the behaviour described by the interface definition is a key achievement 

in Software Engineering; without such boxed thinking, the complexity of today's software would be ab-

solutely intractable and unmanageable. 

Like with data, a standard is called open if it is accessible to everybody without discriminating; some of 

those standards additionally are free of cost (such as with the Open Geospatial Consortium, OGC) while 

others are available against a (usually moderate) fee (such as with ISO). 

Some standardization bodies offer compliance suites which allows validating implementations against 

the standard. One example is the extensive OGC compliance test suite. 

Importantly, it is sufficient for some tool to know its interface specifications ("if I input X I will get Y"). If 

this specification is an open standard, and if the tool has been confirmed to pass the corresponding 

compliance test, then the behaiour of this tool can be trusted with respect to this standard (of course, 

there may be further unwanted behaviour not addressed by the compliance test - for example, such a 

test will typically concentrate on functionality, but not on security). 

Examples are mainfold: we trust SQL query language implementation, regardless whether the database 

management system is open or closed source; we trust our C++ compilers, python engines, numerical 

libraries, operating systems, etc. - at least concerning the core question addressed here: does this code 

provide me with the true, valid data (read from disk or processed)? And, for that matter, we trust the 

underlying hardware which ultimately executes the code. 

3.4 Conclusion 
Concluding, open data and open source and open standards are three different concepts, each one 

addressing separate concerns in the first place. Open data access is desirable from many aspects, 

although there are valid reasons for some data to be not openly accessible. The service software in 
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particular plays an instrumental role in guaranteeing the promise of open data. Open source as such, 

though, is not a guarantee (and not a required prerequisite) for open data - open standards serve a 

much better role in this, although with the caveat that standards do not make a statement about the 

complete client or server stack, but only about the particular aspect addressed by the standard. How-

ever, by using well-crafted standards (ideally coming with a solid mathematical underpinning), such as 

the ISO SQL relational query language or the OGC WCPS geo datacube query language, a substantial 

contribution towards the Holy Grail of open data can be made. The interoperability established thereby 

- in this context: different servers using identical data will deliver identical results - constitutes a major 

advantage whose benefits are by far not leveraged in full today. 
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4 Array Standards 
Several standards relevant for large-scale array processing are already in place or under development. 

Such standards may be both domain independent (such as ISO Array SQL) or domain specific (such as 

the OGC WCPS geo raster query language). For each standard, its adoption status is provided. 

4.1 Domain Neutral 
 Array SQL (data and processing standard) 

o Full title: ISO 9075 SQL Part 15: Multi-Dimensional Arrays (MDA) 

o Issuing Body: ISO (SC 32 / WG 3) 

o Description: SQL extension with domain-neutral definition and queries on massive 

multi-dimensional arrays ("datacubes"). 

o Adoption Status: DIS ballot started in August 2017 

o Further information: 

 D. Misev, P. Baumann: Homogenizing Data and Metadata Retrieval in Scientific 

Applications. Proc. ACM CIKM DOLAP, Melbourne, Australia, October 23, 2015, 

pp. 25 - 34 

4.2 Earth & Planetary Sciences 
 OGC Coverages (geo datacube data standard) 

o Full title: Coverage Implementation Schema (CIS) [formerly also known as: GMLCOV] 

o Issuing Body: Open Geospatial Consortium (OGC) 

o Description: service-independent data model for spatio-temporal regular and irregular 

grids, point clouds, and general meshes. As opposed to ISO 19123 (see below), this is 

concrete enough to be interoperable and conformance testable down to pixel level. 

o Adoption Status: 

 adopted by OGC 

 under adoption by ISO as DIS 19123-2 

 adopted by EU INSPIRE, with slight modifications (re-harmonization with OGC 

coverage standard under work) 

o Further information: 

 authoritative standards page: http://www.opengeospatial.org/standards/wcs  

 tutorials and webinars: http://earthserver.eu/webinars  

 P. Baumann, E. Hirschorn, J. Maso, A. Dumitru, V. Merticariu: Taming Twisted 

Cubes. Proc. ACM SIGMOD Workshop on Managing and Mining Enriched Geo-

Spatial Data (GeoRich), San Francisco, USA, June 26 - July 01, 2016 

 P. Baumann: Beyond Rasters: Introducing The New OGC Web Coverage Service 

2.0. Proc. ACM SIGSPATIAL GIS, San Jose, USA, November 2-5, 2010 

 ISO Coverages (geo datacube data standard) 

o Full title: OGC Abstract Topic 6 (identical to ISO 19123) 

o Issuing Body: ISO (TC211) 

http://www.iso.org/
http://dl.acm.org/citation.cfm?id=2811223&CFID=723484915&CFTOKEN=42259962
http://dl.acm.org/citation.cfm?id=2811223&CFID=723484915&CFTOKEN=42259962
http://www.opengeospatial.org/resource/products/byspec/?specid=640
http://www.opengeospatial.org/standards/wcs
http://earthserver.eu/webinars
http://acmgis2010.cs.ucsb.edu/
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o Description: abstract, generic data model for spatio-temporal coverages. This forms the 

conceptual basis for the Coverage Implementation Schema (CIS) under adoption by ISO 

(See above). 

o Adoption Status: 

 adopted since 2004 as 19123, under revision by ISO to become 19123-1 

o Further information: 

 None currently 

 OGC WCS (geo datacube access and processing standard) 

o Full title: Web Coverage Service 

o Issuing Body: Open Geospatial Consortium (OGC) 

o Description: modular Web service for accessing spatio-temporal regular and irregular 

grids, point clouds, and general meshes 

o Adoption Status: 

o adopted OGC standard since 2012 

 adopted by EU INSPIRE in December 2016 

 planned for adoption by ISO 

o Further information: 

 authoritative standards page: http://www.opengeospatial.org/standards/wcs 

 tutorials and webinars: http://earthserver.eu/webinars  

 P. Baumann: Beyond Rasters: Introducing The New OGC Web Coverage Service 

2.0. Proc. ACM SIGSPATIAL GIS, San Jose, USA, November 2-5, 2010 

 OGC WCPS (processing standard) 

o Full title: Web Coverage Processing Service 

o Issuing Body: Open Geospatial Consortium (OGC) 

o Description: geo raster query language for massive spatio-temporal datacubes over 

regular or irregular grids 

o Adoption Status: 

 adopted OGC standard since 2009 

 optional part in INSPIRE Coverage Download Services 

o Further information: 

 authoritative standards page: http://www.opengeospatial.org/standards/wcps  

 tutorials and webinars: http://earthserver.eu/webinars  

 P. Baumann: The OGC Web Coverage Processing Service (WCPS) Standard. 

Geoinformatica, 14(4)2010, pp 447-479 

http://www.opengeospatial.org/resource/products/byspec/?specid=640
http://inspire.ec.europa.eu/id/document/tg/download-wcs
http://www.opengeospatial.org/standards/wcs
http://earthserver.eu/webinars
http://acmgis2010.cs.ucsb.edu/
http://inspire.ec.europa.eu/id/document/tg/download-wcs
http://www.opengeospatial.org/standards/wcps
http://earthserver.eu/webinars
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10707-009-0087-2
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5 Array Technology 
This page collects technology for handling massive multi-dimensional arrays. While emphasis is on Array 

Databases, other technologies addressing arrays are mentioned as well as long as substantial array 

support can be evidenced. Please observe Etiquette (see bottom). 

Array databases naturally can do the "heavy lifting" in multi-dimensional access and processing, but 

arrays in practice never come alone; rather, they are ornamented with application-specific metadata 

that are critical for understanding of the array data and for querying them appropriately. For example, in 

geo datacubes querying is done typically on geographical coordinates, such as latitude and longitude; 

the system needs to be able to translate queries in geo coordinates into the native Cartesian index co-

ordinates o arrays. In all applications using timeseries, users will want to utilize date formats - such as 

ISO 8601 supporting syntax like "2018-02-20" - rather than index counting. For cell types, it is not suffic-

ient to just know about integer versus floating-point numbers, but it is important to know about units of 

measure, null values (note that sensor data do not just deliver one null value, such as traditional data-

base support, but multiple null values with individual semantics). 

Coupling array queries with metadata query capabilities, therefore, is of high practical importance; ISO 

SQL/MDA, with its integration of arrays into the rich existing framework of the SQL language, shows one 

possible way. If that appears too complex to implement, silo solutions with datacube support are estab-

lished. Specifically in the Earth science domain an explosion of domain-specific "datacube" solutions can 

be observed recently (see, e.g., the EGU 2018 datacube session), usually implemented in python using 

existing array libraries. We, therefore, also look at domain-specific "datacube" tools as well. 

This state of the art review on array service implementations is organised as follows. First, Array Data-

bases are inspected which offer generic query and architectural support for n-D arrays. Next, known 

object-relational emulations of arrays are listed. MapReduce-type systems follow as a substantially diff-

erent category of data systems, which however often is mentioned in the context of Bi Data. After that, 

systems are listed which do not fall into any of the above categoris. Finally, we list libraries (as opposed 

to the aforementioned complete engines) and n-D array data formats. 

5.1 Array Database Systems and Related Technologies 

5.1.1 Systematics 

This section inspects Array Database and related technology. As recently a significant boom in array 

systems can be observed that an increasing number of technologies is being announced, at highly vary-

ing stages of maturity. Thanks to the blooming research and development it can be expected that furth-

er systems emerge soon which have not found their way into this report. The landscape of systems en-

countered has been grouped into the following categories (see also Section 2.5): 

 Array Database systems characterized by a query language, multi-user operation, storage 

management, and access control mechanisms. These can be subdivided into 

o Full-stack Array Databases which are implemented from scratch (ex: rasdaman, SciDB) 

https://meetingorganizer.copernicus.org/EGU2018/posters/28035
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o Add-ons to existing database systems which are implemented as extra layers to existing 

DBMSs (ex: EXTASCID), as object-relational extensions (ex: PostGIS Raster, Teradata 

Arrays, OracleGeoRaster), or through direct DBMS kernel coding (ex: SciQL). 

 Array tools encompassing command-line oriented and libraries that provide array functionality, 

but do not constitute a server; the central distinguishing criteria are that (i) they do not offer a 

query concept, but rather a procedural API (where each call can accomplish just one piece of 

functionality, as opposed to arbitrarily complex user queries in databases), and (ii) they do not 

accept queries via Internet, but rather require being logged in on the server machine for execut-

ing shell commands (ex: Ophidia) or writing own embedding code in some scripting language 

like python (ex: Wendelin.core, xarray, TensorFlow) or a compiled language like C++ (ex: boost:: 

geometry, xtensor). Such approaches appear useful inside a data center where data experts at 

the same time are experienced full-stack developers, as opposed to data scientists who gener-

ally prefer high-level languages like R. 

As such, these tools and libraries form possible components of array services, but do not con-

stitute a complete service tool per se. 

 MapReduce type array engines allowing multi-dimensional array processing based on top of 

Hadoop or Spark. 

5.1.1 Array DBMSs - Full-Stack 

In this category we find database systems with the characteristic service features – a query language, 

multi-user operation, etc. 

5.1.1.1 rasdaman ("raster data manager") 

Description: Rasdaman has pioneered the field of Array Databases, with publications since 1992. This 

array engine allows declarative querying of massive multi-dimensional arrays, including distributed array 

joins. Server-side processing relies on effective optimization, parallelization, and use of heterogeneous 

hardware for retrieval, extraction, aggregation, and fusion on distributed arrays. The architecture re-

sembles a parallelizing peer federation without a single point of failure. Arrays can be stored in the opt-

imized rasdaman array store or in standard databases; further, rasdaman can operate directly on any 

pre-existing archive structure. Single rasdaman databases exceed a PB [3], and queries have been split 

successfully across more than 1,000 cloud nodes [21]. The rasdaman technology has coined the research 

field of Array Databases [10]and is blueprint for several Big Data standards, such as the ISO SQL/MDA 

(Multi-Dimensional Arrays) candidate standard [34] and the OGC Web Coverage Service (WCS) "Big Geo 

Data" suite with its geo datacube query language, Web Coverage Processing Service (WCPS) [13]. 

Source code: www.rasdaman.org/Download for the open-source rasdaman community edition (LGPL for 

client libraries, GPL for server – so can be embedded in commercial applications); for the proprietary 

rasdaman enterprise edition see www.rasdaman.com. 

Public demo site and further information: 

 http://standards.rasdaman.com  

Publications (excerpt only - see full list): 

http://www.rasdaman.org/Download
http://www.rasdaman.com/
http://standards.rasdaman.com/
http://www.faculty.jacobs-university.de/pbaumann/iu-bremen.de_pbaumann/pubs.php
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 ISO FDIS 9075 SQL Part 15: Multi-Dimensional Arrays 

 P. Baumann: Array Databases and Raster Data Management. In: T. Özsu, L. Liu (eds.): Encyclo-

pedia of Database Systems, Springer, 2017 

 D. Misev, P. Baumann: The Open-Source rasdaman Array DBMS. VLDB Big Data Open Source 

Systems (BOSS) Workshop, New Delhi, India, September 09, 2016 

 P. Baumann, V. Merticariu: On the Efficient Evaluation of Array Joins. Proc. IEEE Big Data Work-

shop Big Data in the Geo Sciences, Santa Clara, US, October 29, 2015 

 P. Baumann: On the Management of Multidimensional Discrete Data. VLDB Journal 4(3)1994, 

Special Issue on Spatial Database Systems, pp. 401 - 444 

 P. Baumann: A Database Array Algebra for Spatio-Temporal Data and Beyond. Proc. Intl. Work-

shop on Next Generation Information Technologies and Systems (NGITS '99), July 5-7, 1999, 

Zikhron Yaakov, Israel, Springer LNCS 1649 

 Peter Baumann: Language Support for Raster Image Manipulation in Databases. Proc. Int. 

Workshop on Graphics Modeling, Visualization in Science & Technology, Darmstadt/Germany, 

April 13 - 14, 1992 

5.1.1.2 SciDB 

Description: SciDB is an Array DBMS following the tradition of rasdaman. SciDB employs its own query 

interface offering two languages, AQL (Array Query Language) and AFL (Array Functional Language). Its 

architecture is based on a modified Postgres kernel in the center plus UDFs (User-Defined Functions) 

implementing array functionality, and also effecting parallelization. 

Website: https://www.paradigm4.com/  

Source code: https://drive.google.com/drive/folders/0BzNaZtoQsmy2aGNoaV9Kdk5YZEE (last version of 

source code; more recent SciDB versions – current at the time of this writing is 18.1 – do not publish the 

source code any longer) 

(dual license model, see details; community version is Affero: not allowed for commercial purposes) 

5.1.1.3 SciQL 

Description: SciQL was a case study extending the column-store DBMS MonetDB with array-specific op-

erators. As such, n-D arrays were sequentialized internally to column-store tables (i.e., there is no dedic-

ated storage and processing engine). 

Website: https://projects.cwi.nl/scilens/content/platform.html  

Source code: (could not find it - not with MonetDB) 

5.1.1.4 EXTASCID 

Description: EXTASCID is a complete and extensible system for scientific data processing. It supports 

natively both arrays as well as relational data. Complex processing is handled by a metaoperator that 

can execute any user code. EXTASCID is built around the massively parallel GLADE architecture for data 

aggregation. While it inherits the extensibility provided by the original GLA interface implemented in 

https://www.paradigm4.com/
https://drive.google.com/drive/folders/0BzNaZtoQsmy2aGNoaV9Kdk5YZEE
https://www.paradigm4.com/about/licensing/
https://projects.cwi.nl/scilens/content/platform.html
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GLADE, EXTASCID enhances this interface considerably with functions specific to scientific processing. 

(source). 

Website: http://faculty.ucmerced.edu/frusu/Projects/GLADE/extascid.html  

Source code: (could not find it – likely not publicly available) 

5.1.2 Array DBMSs – Object-Relational Extensions 

Object-relational capabilities in relational DBMSs allow users (usually: administrators) to define new 

data types as well as new operators. Such data types can be used for column definitions, and the corr-

esponding operators can be used in queries. While this approach has been implemented by several 

systems (see below) it encounters two main shortcomings: 

 An array is not a data type, but a data type constructor (sometimes called "template"). An 

instructive example is a stack: likewise, it is not a data type but a template which needs to be 

instantiated with some element data type to form a concrete data type itself - for example, by 

instantiating Stack<T> with String - often denoted as Stack<String> - one particular 

data type is obtained; Stack <Integer> would be another one. An array template is para-

metrized with an n-dimensional extent as well as some cell ("pixe", "voxel") data type; following 

the previously introduced syntax this might be written as Array<Extent,CellType>. 

Hence, object-relational systems cannot provide the array abstraction as such, but only 

instantiated data types like  

Array<[0:1023,0:767],int>  

or  

Array <[0:1023,0:767],struct{int red, green, blue;}>.  

Further, as the SQL syntax as such cannot be extended such array support needs to introduce 

some separate array expression language. Generic array types like the rasdaman n-D array 

constructor become difficult at best. Further, this approach typically implies particular imple-

mentation restrictions. 

 Due to the genericity of such object-relational mechanisms there is no dedicated internal 

support for storage management (in particular: for efficient spatial clustering, but also for array 

sizes), indexing, and query optimization. 

Still, some systems have implemented array support in an object-relational manner as it is substantially 

less implementation effort than implementing the full stack of an Array DBMS, with each component 

crafted specifically for arrays. 

5.1.2.1 PostGIS Raster 

Description: "Raster" is a PostGIS type for storing and analyzing geo raster data. Like PostGIS in general, 

it is implemented using the extension capabilities of the PostgreSQL object-relational DBMS. Internally, 

raster processing relies heavily on GDAL. Currently, PostGIS Raster supports x/y 2D and, for x/y/spectral, 

3D rasters. It allows raster expressions, however, not integrated with the PostgreSQL query language 

but passed to a raster object as strings written in a separate Map Algebra language. Large objects have 

to be partitioned by the user and distributed over tuples in a table's raster column; queries have to be 

http://faculty.ucmerced.edu/frusu/Projects/GLADE/extascid.html
http://faculty.ucmerced.edu/frusu/Projects/GLADE/extascid.html
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written in a way that they achieve a proper recombination of larger rasters from the partitions stored in 

one tuple each. A recommended partition size is 100x100 pixels. 

Website: http://postgis.net/docs/manual-2.1/RT_reference.html  

Source code: https://trac.osgeo.org/postgis/wiki/DevWikiMain  

5.1.2.2 Oracle GeoRaster 

Description: GeoRaster is a feature of Oracle Spatial that lets you store, index, query, analyze, and 

deliver raster image and gridded data and its associated metadata. GeoRaster provides Oracle spatial 

data types and an object-relational schema. You can use these data types and schema objects to store 

multidimensional grid layers and digital images that can be referenced to positions on the Earth's 

surface or in a local coordinate system. If the data is georeferenced, you can find the location on Earth 

for a cell in an image; or given a location on Earth, you can find the cell in an image associated with that 

location. There is no particular raster query language underneath, nor a specific array-centric 

architecture. 

Website: http://docs.oracle.com/cd/B19306_01/appdev.102/b14254/geor_intro.htm  

Source code: n.a. (closed source, proprietary) 

5.1.2.3 Teradata Arrays 

Description: Teradata recently has added arrays as a datatype, also following an object-relational 

approach. There are some fundamental operations such as subsetting; however, overall the operator do 

not resemble the expressive power of genuine Array DBMSs. Further, arrays are mapped to 64 kB blobs 

so that the overall size of a single array (considering the array metadata stored in each blob) seems to 

be around 40 kB. Further, there are severe restrictions: You can update only one element of the array at 

a time; it us unclear whether array joins are supported. 

Website: https://developer.teradata.com/database/reference/array-data-type-scenario, 

http://info.teradata.com/htmlpubs/DB_TTU_16_00/index.html#page/SQL_Reference%2FB035-1145-

160K%2Fxbk1472240940805.html%23 

Source code: n.a. (closed source, proprietary) 

5.1.3 Array Tools  

5.1.3.1 OPeNDAP 

Description: OPeNDAP ("Open-source Project for a Network Data Access Protocol") is a data transport 

architecture and protocol for earth scientists. OPeNDAP includes standards for encapsulating structured 

data, annotating the data with attributes and adding semantics that describe the data. An OPeNDAP 

client sends requests to an OPeNDAP server, and receives various types of documents or binary data as 

a response. (Wikipedia) 

An array is one-dimensional; multidimensional Arrays are defined as arrays of arrays.  An array’s memb-

er variable MAY be of any DAP data type. Array indexes MUST start at zero. A constraint expression pro-

http://postgis.net/docs/manual-2.1/RT_reference.html
https://trac.osgeo.org/postgis/wiki/DevWikiMain
http://docs.oracle.com/cd/B19306_01/appdev.102/b14254/geor_intro.htm
https://developer.teradata.com/database/reference/array-data-type-scenario
http://info.teradata.com/htmlpubs/DB_TTU_16_00/index.html#page/SQL_Reference%2FB035-1145-160K%2Fxbk1472240940805.html%23
http://info.teradata.com/htmlpubs/DB_TTU_16_00/index.html#page/SQL_Reference%2FB035-1145-160K%2Fxbk1472240940805.html%23
https://en.wikipedia.org/wiki/OPeNDAP
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vides a way for DAP client programs to request certain variables, or parts of certain variables, from a 

data source. A constraint expression may also use functions executed by the server. See this source for 

details. 

Website: http://www.opendap.org/  

Source code: http://www.opendap.org/software/hyrax-data-server  (Hyrax) 

5.1.3.2 xarray 

Description: xarray (formerly xray) is an open source project and Python package that aims to bring the 

labeled data power of pandas to the physical sciences, by providing N-dimensional variants of the core 

pandas data structures.Goal is to provide a pandas-like and pandas-compatible toolkit for analytics on 

multi-dimensional arrays, rather than the tabular data for which pandas excels. The approach adopts the 

Common Data Model for self- describing scientific data in widespread use in the Earth sciences: 

xarray.Dataset is an in-memory representation of a netCDF file. [source: xarray.pydata.org/en/stable/] 

Website: http://xarray.pydata.org  

Source code: http://xarray.pydata.org/en/stable/installing.html#instructions  

5.1.3.3 TensorFlow 

Description: TensorFlow is a tool for machine learning. While it contains a wide range of functionality, 

TensorFlow is mainly designed for deep neural network models. 

Website: https://www.tensorflow.org/  

Source code: https://www.tensorflow.org/install/ 

5.1.3.4 wendelin.core 

Description: Wendelin.core allows you to work with arrays bigger than RAM and local disk. Bigarrays are 

persisted to storage, and can be changed in transactional manner. In other words bigarrays are some-

thing like numpy.memmap for numpy.ndarray and OS files, but support transactions and files bigger 

than disk. The whole bigarray cannot generally be used as a drop-in replacement for numpy arrays, but 

bigarray slices are real ndarrays and can be used everywhere ndarray can be used, including in C / 

python / Fortran code. Slice size is limited by virtual address-space size, which is about max 127TB on 

Linux / amd64. (source) 

Website: https://lab.nexedi.com/nexedi/wendelin.core  

Source code: https://lab.nexedi.com/nexedi/wendelin.core  

5.1.3.5 Google Earth Engine 

Description: Google Earth Engine builds on the tradition of Grid systems with files, there is no datacube 

paradigm. Based on a functional programming language, users can submit code which is executed trans-

parently in Google’s own distributed environment, with a worldwide private network.  Parallelization is 

straightforward. After discussion of the developers with the rasdaman team, Google has added a declar-

http://www.opendap.org/pdf/ESE-RFC-004v1.2.pdf
http://www.opendap.org/
http://www.opendap.org/software/hyrax-data-server
http://pandas.pydata.org/
http://www.unidata.ucar.edu/software/thredds/current/netcdf-java/CDM
http://xarray.pydata.org/en/stable/
http://xarray.pydata.org/
http://xarray.pydata.org/en/stable/installing.html#instructions
https://www.tensorflow.org/
https://www.tensorflow.org/install/
http://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html
https://lab.nexedi.com/nexedi/wendelin.core
https://lab.nexedi.com/nexedi/wendelin.core
https://lab.nexedi.com/nexedi/wendelin.core
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ative “Map Algebra” interface in addition which resembles a subset of the rasdaman query language. In 

a face-to-face conversation at the "Big Data from Space" conference 2016, the EarthEngine Chief Archit-

ect explained that EarthEngine is relying on Google’s massive hardware rather than on algorithmic elab-

oration. At the heart is a functional programming language which does not offer model-based array 

primitives like rasdaman, nor comparable optimization. 

Website: https://earthengine.google.com/  

Source code: n.a., closed-source, proprietary system 

5.1.3.6 OpenDataDatacube 

Description: The Open Data Cube (ODC) initiative seeks to increase the value and impact of global Earth 

observation satellite data by providing an open and freely accessible exploitation architecture. (source). 

A python API specification can be found at http://datacube-core.readthedocs.io/en/stable/dev/api.html, 

a Web interface specification could not be found. 

Website: https://www.opendatacube.org/ 

Source code: https://github.com/ceos-seo/data_cube_ui/blob/master/docs/datacube_install.md  

5.1.3.7 xtensor 

Description: xtensor is a C++ library meant for numerical analysis with multi-dimensional array express-

ions. xtensor provides an extensible expression system enabling lazy broadcasting, an API following the 

idioms of the C++ standard library, and tools to manipulate array expressions and build upon xtensor. 

Containers of xtensor are inspired by NumPy, the Python array programming library. Adaptors for exist-

ing data structures to be plugged into our expression system can easily be written. In fact, xtensor can 

be used to process numpy data structures inplace using Python’s buffer protocol. For more details on 

the numpy bindings, check out the xtensor-python project. (source) 

Website: http://quantstack.net/xtensor  

Source code: https://github.com/QuantStack/xtensor  

5.1.3.8 boost::geometry 

Description: Boost.Geometry (aka Generic Geometry Library, GGL), part of collection of the Boost C++ 

Libraries, defines concepts, primitives and algorithms for solving geometry problems. Boost.MultiArray 

provides a generic N-dimensional array concept definition and common implementations of that 

interface. 

Website: http://www.boost.org/doc/libs/1_66_0/libs/multi_array/doc/index.html  

Source code: https://github.com/boostorg/boost 

5.1.3.9 Ophidia 

Description: The Ophidia framework provides a full software stack for data analytics and management 

of big scientific datasets exploiting a hierarchically distributed storage along with parallel, in-memory 

https://earthengine.google.com/
https://www.opendatacube.org/
http://datacube-core.readthedocs.io/en/stable/dev/api.html
https://www.opendatacube.org/
https://github.com/ceos-seo/data_cube_ui/blob/master/docs/datacube_install.md
http://www.numpy.org/
https://docs.python.org/3/c-api/buffer.html
https://github.com/QuantStack/xtensor-python
http://quantstack.net/xtensor
http://quantstack.net/xtensor
https://github.com/QuantStack/xtensor
http://www.boost.org/doc/libs/1_66_0/libs/multi_array/doc/index.html
https://github.com/boostorg/boost
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computation techniques and a server-side approach. The Ophidia data model implements the data cube 

abstraction to support the processing of multi-dimensional (array-based) data. A wide set of operators 

provides functionalities to run data analytics and metadata management: e.g. data sub-setting, reduct-

ion, statistical analysis, mathematical computations, and much more. So far about 50 operators are pro-

vided in the current release, jointly with about 100 primitives covering a large set of array-based funct-

ions. The framework provides support for executing workflows with various sizes and complexities, and 

an end-user terminal, i.e.: command-line interface. A programmatic Python interface is also available for 

developers.  

Website: http://ophidia.cmcc.it/  

Source code: https://github.com/OphidiaBigData (GPLv3) 

5.1.3.10 TileDB 

Description: The TileDB library manages data that can be represented as dense or sparse arrays. It can 

support any number of dimensions and store in each array element any number of attributes of various 

data types. It offers compression, high IO performance on multiple data persistence backends, and easy 

integration with ecosystems used by today’s data scientists. 

Website: https://tiledb.io/  

Source code: https://github.com/TileDB-Inc/  

5.1.4 MapReduce-Type Systems 

5.1.4.1 Overview 

MapReduce offers a general parallel programming paradigm which is based on two user-implemented 

functions, Map() and Reduce(). While Map() performs filtering and sorting, Reduce() acts as an aggreg-

ator. Both functions are instantiated multiple time for massive parallelization; the MapReduce engine 

manages the process instances as well as their communication. 

Implementations of the MapReduce paradigm - such as Hadoop, Spark, and Flink - typically use Java or 

Scala for the Map() and Reduce() coding. While these languages offer array primitives for processing 

multi-dimensional arrays locally within a Map() and Reduce() incarnation here is no particular support 

for arrays exceeding local server main memory; in particular, the MapReduce engines are not aware of 

the spatial n-dimensional proximity of array partitions. Hence, the common MapReduce optimizations 

cannot exploit the array semantics. Essentially, MapReduce is particularly well suited for unstructured 

data like sets: "Since it was not originally designed to leverage the structure its performance is 

suboptimal" [1]. 

That said attempts have been made to implement partitioned array management and processing on top 

of MapReduce. Below some major approaches are listed. 

http://ophidia.cmcc.it/
https://github.com/OphidiaBigData
https://tiledb.io/
https://github.com/TileDB-Inc/
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5.1.4.2 SciHadoop 

Description: SciHadoop is a Hadoop plugin allowing scientists to specify logical queries over array-based 

data models. SciHadoop executes queries as map/reduce programs defined over the logical data model. 

A SciHadoop prototype has been implemented for NetCDF data sets. 

Website:  DAMASC research group. 

Source code: https://github.com/four2five/SciHadoop  

5.1.4.3 SciSpark 

Description: SciSpark is a NASA's Advance Information Systems Technology (AIST) program funded 

project that seeks to provide a scalable system for interactive model evaluation and for the rapid 

development of climate metrics and analysis to address the pain points in the current model evaluation 

process. SciSpark directly leverages the Apache Spark technology and its notion of Resilient Distributed 

Datasets (RDDs). SciSpark is implemented in a Java and Scala Spark environment.  

Website:  https://scispark.jpl.nasa.gov/  

Source code: https://github.com/SciSpark  

5.1.4.4 GeoTrellis 

Description: GeoTrellis is a geographic data processing engine for high performance applications. Geo-

Trellis provides data types for working with rasters in the Scala language, as well as fast reading and 

writing of these data types to disk. 

Website: http://geotrellis.io/  

Source code: https://github.com/geotrellis  

5.1.4.5 MrGeo 

Description: MrGeo (pronounced "Mister Geo") is an open source geospatial toolkit designed to provide 

raster-based geospatial processing capabilities performed at scale. MrGeo enables global geospatial big 

data image processing and analytics. MrGeo is built upon the Apache Spark distributed processing 

framework. 

Website: https://github.com/ngageoint/mrgeo/wiki  

Source code: https://github.com/ngageoint/mrgeo  

 

https://systems.soe.ucsc.edu/projects/damasc#proj1
https://github.com/four2five/SciHadoop
https://scispark.jpl.nasa.gov/
https://github.com/SciSpark
http://geotrellis.io/
https://github.com/geotrellis
https://github.com/ngageoint/mrgeo/wiki
https://github.com/ngageoint/mrgeo
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6 Publicly Accessible Array Services 
Below, a selection of publicly accessible services (in RDA terminology: adopters) is listed which use Array 

Database technology. To be noted is the variability of the portal frontends and clients used, all uniformly 

mapping to Array Database technology underneath. 

 

Fig. 7. Impressions of various services powered by an Aray Database system  
(source: rasdaman / EarthServer). 

 standards.rasdaman.com (rasdaman): sample geo-oriented array use cases on 1-D through 5-D 

data sets. Purpose of this service is to illustrate practical use of the OGC Big Geo Datacube 

standards, WCS and WCPS. 

 ESA Earth Observation Data Service (rasdaman): this ESA service, maintained by MEEO, currently 

(beginning 2018) is offering in excess of 2.5 Petabyte of Atmosphere, Land and Ocean EO pro-

ducts coming from the Sentinel family. A private cloud infrastructure is being set up to imple-

ment advanced access processing services on Big Data. 

 ECMWF Climate Science Data Service (rasdaman): The experimental service provides access to 

ERA-interim reanalysis datathrough the OGC standard data access protocols WCS and WCPS. A 

connection to ECMWF's Meteorological Archival and Retrieval System (MARS) has been 

demonstrated.  

 Marine Science Data Service (rasdaman): this service, offered by Plymouth Marine Laboratory 

(PML, UK) provides access and processing on satellite imagery for ocean colour analysis. Current 

offering is 70+ TB. 

 PlanetServer (rasdaman): Planetary Data Service, hosted by Jacobs University, is offering 

geology data currently for Mars, Moon, and Vesta. Total data size is 20+ TB, based on OGC WCS 

and WCPS standard based interfaces. 

http://standards.rasdaman.com/
https://eodataservice.org/
http://earthserver.ecmwf.int/
http://earthserver.pml.ac.uk/
http://planetserver.github.io/
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 CODE-DE is the German Sentinel hub providing data collected by the ESA Sentinel Earth Observ-

ation satellite family. The batch-oriented Hadoop-based service of CODE-DE is currently being 

enhanced with interactive spatio-temporal datacube analytics using rasdaman. 

 National Computational Infrastructure (NCI) Australia has an experimental service on Landsat8 

data covering Australia, running rasdaman. 

https://code-de.org/
http://rasdaman.nci.org.au/rasdaman/ows
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7 Array Systems Assessment 

7.1 Systematics 
We look at the systems from the perspectives 

 Functionality: What functionality does the system offer? Are there any known restrictions? 

 Architecture: This mainly addresses the architectural paradigms used. As such, this is not a 

quality criterion, but provided as background information. 

 Performance: How fast and scalable is the tool in comparison? 

This section relies on [33] and other work undertaken in this context.  

Each of the criteria applied is explained first; after that, a feature matrix is presented summarizing all 

facts synoptically. In addition, literature is cited where the information has been harvested from. This 

allows recapitulating the matrix. Notably, several systems today are capable of integrating external code 

(e.g., SciDB, rasdaman). Therefore, it is indispensable for each functionality feature to clearly state if it is 

an integral part implemented in the core engine or not. 

Some systems mentioned could not be considered due to resource limitations, but they are considered 

sufficiently similar to the ones inspected below. Examples include MrGeo and GeoTrellis as specialized 

Hadoop implementations offering array support. 

7.2 Functional Comparison 

7.2.1 Criteria 

This is functionality the user (i.e., query writer) has available in terms of the data and service model. In 

this spirit, we also list export/import interfaces as well as known client interfaces although they do not 

belong to the logical level in a classic sense. Parameters investigated are the following: 

Data model expressiveness: 

 number of dimensions: what number of dimensions can an array have? Today, 3-D x/y/t image 

timeseries and x/y/z voxel cubes are prominent, but also 4-D x/y/z/t gas and fluid simulations, 

such as atmospheric weather predictions. However, other dimensions occur as well: 1-D and 2-D 

data appear not only standalone (as sensor and image data, resp.), but also as extraction results 

from any-dimensional datacubes (such as a pixel's history or image time slices). Also, higher 

dimensions occur regularly. Climate modellers like to think in 5-D cubes (with a second time 

axis), and statistical datacubes can have a dozen dimensions. Any array engine should offer 

support for this spectrum of dimensions. 

 extensibility of extent along dimensions: can an existing array be extended along each 

dimension's lower and upper bound? Imagine a map has been defined for a country, and now is 

to be extended to cover the whole continent. This means: every axis must be extensible, and it 

must be so on both its lower and upper bounds. 
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 cell data types: support for numeric data types, for composite cells (e.g., red/green/blue pixels), 

etc. While radar imagery consists of single values (complex numbers), satellite images may have 

dozens or even hundreds of "bands". Climate modelers consider 50 and more "variables" for 

each location in the atmosphere, indicating measures like temperature, humidity, wind speed, 

trace gases, etc. 

 null values: is there support for null values? For single null values vs several null values? Proper 

treatment of null values in operations? Null values are well known in databases, and scientific 

data definitely require them, too. However, instrument observations typically know of more 

than one null value (such as "value unknown", "value out of range", "no value delivered", etc.), 

and these meanings typically are piggybacked on some value from the data type (such as -9999 

for "unkown depth"). Such null values should be considered by array databases, too. Operations 

must treat null values appropriately so that they don't falsify results. 

 data integration: can queries integrate array handling with data represented in another model, 

such as: Relational tables? XML stores? RDF stores? Other? This is important, eg, for data/meta-

data integration - arrays never come standalone, but are ornamented with metadata critically 

contributing to their semantics. Such metadata typically reside already under ordered data 

management (much more so than the arrays themselves, traditionally) frequently utilizing some 

well-known data model. 

 General-purpose or domain specific? Array databases per se are domain independent and, 

hence, can be used for all application domains where arrays occur. However, some systems 

have been crafted with a particular domain in mind, such as geo data cubes, and consequently 

may be less applicable to other domains, such as medical imagery. 

Processing model expressiveness: 

 query language expressiveness (built-in): This section investigates functionality which is readly 

available through the primary query language and directly supported by the system (i.e., not 

through extension mechanisms). 

o formal semantics: is there a mathematical semantics definition underlying data and 

query model? While this may seem an academic exercise a formal semantics is indisp-

ensable to verify that the slate of functionality provided is sufficiently complete (for a 

particular requirements set), consistent, and without gaps. Practically speaking, a well-

defined semantics enables safe machine-to-machine communication, such as automatic 

query generation without human interference. 

o declarative: does the system offer a high-level, declarative query language? Low-level 

procedural languages (such as C, C++, Java, python, etc.) have several distinct disadvant-

ages: (i) They force users to write down concrete algorithms rather than just describing 

the intended result;  (ii) the server is constrained in the potential of optimising queries; 

(iii) delarative code can be analyzed by the server, e.g., to estimate costs and, based on 

this, enforce quota; (iv) a server accepting arbitrary procedural code has a substantial 

security hole. SQL still is the role model for declarative languages. 
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o optimizable: can queries be optimized in the server to achieve performance improve-

ments? What techniques are available? Procedural code typically is hard to optimize on 

server side, except for "embarrassingly parallel" operations, i.e., operations where par-

allelization is straightforward. Declarative languages usually open up vistas for more 

complex optimizations, such as query rewriting, query splitting, etc. (See also discussion 

later on system architectures.) 

o subsetting (trim, slice) operations: can arrays be subset along all dimensions in one 

request? Extraction of sub-arrays is the most fundamental operation on arrays. Trimm-

ing means reducing the extent by indicating new lower and upper bounds (which both 

lie inside the array under inspection) whereas slicing means extracting a slab at a part-

icular position on an axis. Hence, trimming keeps the number of dimensions in the out-

put while slicing reduces it; for example, a trim in x and y plus a slice in t would extract, 

from a 4-D x/y/z/t datacube, a 3-D x/y/z timeslice. Systems must support server-side 

trimming and slicing on any number of dimensions simultaneously to avoid transporting 

excessive amounts of data. 

o common operations: can all (unary and binary) operations which are available on the 

cells type known to the system also be applied element-wise to arrays? Example: a+b is 

defined in numbers, so A+B should be possible on arrays. 

o array construction: can new arrays be created in the databases (as opposed to creating 

arrays only from importing files)? For example, a histogram is a 1-D array derived from 

some other array(s). 

o aggregation operations: can aggregates be derived from an array, supporting common 

operations like sum, average, min, max? Can an aggregation query deliver scalars, or 

aggregated arrays, or both? Note that aggregation does not always deliver just a single 

number - aggregation may well just involve selected axes, hence return a (lower-

dimensional) array as a result. 

o array joins: can two or more arrays be combined into a result array? Can they have diff-

erent dimensions, extents, cell types? While such functionality is indispensable (think of 

overlaying two map images) it is nontrivial to implement (think of diverging partitioning 

array schemes), hence not supported by all systems. 

o Tomlin's Map Algebra support: are local, focal, zonal, global operations [43] expressible 

in queries. Essentially, this allows to have arithmetic expressions as array indexes, such 

as in "a[x+1] - a[x-1]". Image filtering and convolution is maybe the most prominent app-

lication of such addressing, but there are many important operations requiring sophist-

icated array cell access – even matrix multiplication is not trivial in this sense. 

 external function invocation: can external code (also called UDF, User-Defined Functions) be 

linked into the server at runtime so that this code can be invoked from within the query lang-

uage? Commonly, array query languages are restricted in their expressiveness to remain "safe in 

evaluation". Operations more complex or for which code is already existing can be implemented 

through UDFs, that is: server-side code external to the DBMS which gets linked into the server at 

invocation time. Obviously, UDFs can greatly enhance DBMS functionality, e.g., for adding in 
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domain-specific functionality. Some systems even implement core array functionality via UDFs. 

To avoid confusion we list built-in and UDF-enabled functionality separately. 

Import/export capabilities: 

 Data formats: what data formats are supported, and to what degree? 

 ETL tools: what mechanisms exist to deal with inconsistent and incomplete import data? 

 Updates to regions within arrays: How selectively can array cells be updated? The (usually 

massive) arrays need to be built piecewise, and sometimes need to be updated in application-

dependent areas; for example, a road map raster layer may need to be updated exactly along 

the course of a road that has been changed, defined maybe through some polygonal area. 

Client interfaces: 

 Domain-independent interfaces: which domain-independent interfaces exist for sending 

queries and presenting results? 

 Domain-specific interfaces: which domain-specific clients exist for sending queries and 

presenting results? 

Functionality beyond arrays: can queries perform operations involving arrays, but transcending the 

array paradigm? This section is a mere start and should be extended in future. However, at the current 

state of the art it is not yet clear which generic functionality is most relevant. 

o polygon/raster clipping: Can a clipping (i.e., join) be performed between raster and 

vector data? Such functionality is important in brain research (ex: analyze brain regions 

defined in some atlas), in geo services (ex: long-term vegetation development over a 

particular country), and many more applications. Sometimes such clipping is confined to 

2-D x/y, but some engines allow n-D polygons. 

Standards support: Which array service standards does the tool support? Currently, two standards are 

particularly relevant for arrays or “datacubes”: 

 ISO SQL 9075 Part 15: Multi-Dimensional Arrays (MDA) extends the SQL query language with 

domain-neutral modeling and query support for n-D arrays [26], adopting the rasdaman query 

model [34]. As an additional effect, SQL/MDA establishes a seamless integration of (array) data 

and (relational) metadata which is seen as a game changer for science and engineering data. 

 OGC Web Coverage Processing Service (WCPS) defines a geo datacube analytics language [13] 

[14]. Its core principles are similar to SQL/MDA, with two min differences. First, WPCS knows 

about geo semantics, understanding spatial and temporal axes, coordinate reference systems 

(and transformations between them). It is based on the OGC datacube standard which centers 

around the model of spatio-temporal coverage data [36]. Second, it is prepared for integration 

with XPath/XQuery as most metadata today are stored in XML. Experimentally, such an integrat-

ion has already been performed [30]. Within the EarthServer initiative, WCPS has demonstrated 

its capabilities on Petabyte datacube holdings [3]. 
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7.2.2 Feature Matrix 

 Array DBMS 

 full-stack Array DBMS Add-on array support 

 rasdaman SciDB SciQL EXTASCID PostGIS Raster Oracle 
GeoRaster 

Teradata 
Arrays 

Data model               

dimensions n-D n-D n-D n-D 2D 2D 1..5-D 

array extensibility all axes, 
lower and 

upper bound 

all axes, 
lower and 

upper 
bound 

all axes, lower and 
upper bound 

? X & Y axes, 
lower and 

upper bound 

yes no 

cell data types int, float, 
complex,  

structs 

numeric 
types, 

datetime 

Any SQL data type ? 
(presumably 

C++ 
primitive 

types) 

int, float, band-
wise structs 

int & float 
(various 
lengths), 
structs 

common SQL 
data types 

(except var-
iable length) 

null values yes, null 
velue sets 

and intervals, 
can be 

assigned 
dynamically 

yes (single 
null) 

yes, SQL-style 
(single null) 

? yes (single 
value) 

yes, SQL-
style (single 

value) 

yes, SQL-style 
(single value); 

defined at 
table creation 

time 

Data integration               

relational tables yes, via 
SQL/MDA std 

no yes yes yes, via 
postgresql 

yes yes 

XML stores yes, via WCPS 
std 

no no 
(MonetDB/XQuery 
is not maintained 

since 2011) 

no yes, via 
postgresql 

yes yes 

RDF stores yes, with 
AMOS II 

no yes no Only via 
postgresql 

plugins 

yes yes 
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Other         OSM, OGR     

Domain specific? generic generic generic generic geo raster geo raster generic 

horizontal spatial 
axes 

yes no no   no yes  yes no 

height/depth axis yes no no   no no no no 

time axis yes np no   no no no no 

Processing model               

query language  
expressiveness  
(built-in) 

declarative 
array QL 

declarative 
array QL 

declarative array 
QL 

no,  
function 

calls 

array functions 
with specific 
microsyntax, 

not tightly 
integrated with 

SQL 

PL/SQL + 
object-

relational 
functions 
with sub-
language 

array functions 
with specific 
microsyntax, 

not tightly 
integrated 
with SQL 

formal semantics Array Algebra no no no no no no 

tightly integrated  
with SQL or some  
other QL 

yes, via 
SQL/MDA std 

no yes no array 'Map 
Algebra' syntax 
separate from 

SQL 

no no 

optimizable yes yes yes no yes no (array 
functionality 
not integrat-
ed with QL) 

no 

subsetting (trim, 
slice)  

yes yes yes no yes trim yes 

common cell 
operations  

yes yes yes no yes yes yes 

arbitrary new  
     array derivation 

yes yes yes no yes yes only up to 
2559 cells; 

initialization 
with literals or 
through UDF 

aggregation yes yes yes no yes yes yes 
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array joins yes yes yes no yes   no 

Tomlin's Map  
     Algebra 

yes yes on principle, via 
WHERE clause 
predicates on 

indexes 

no in MapAlgebra() 
function (only 

local, focal) 

only local only local 

external function  
invocation  (UDF) 

yes yes yes yes yes yes yes 

Import / export               

data formats large number 
of formats: 
CSV, JSON, 
(Geo)TIFF, 

PNG, NetCDF, 
JPEG2000, 
GRIB2, etc. 

CSV/text, 
binary 
server 
format 

FITS, MSEED, BAM 
and (Geo)TIFF 

? large number of 
formats, includ-

ing GeoTIFF 

TIFF, GIF, 
BMP, PNG 

? 

data cleansing yes, ETL tool no no ? no no no 

array cells update any cell or 
region 

any cell or 
region 

any cell or region ? down to single 
cell level 

down to 
single cell 

level 

down to single 
cell level 

Client interfaces               

domain-independent  python, R python, R, 
julia 

python, R ? psql PL/SQL Teradata SQL 

domain-specific  many geo 
clients via 

OGC 
standards: 

OpenLayers, 

? ? ? MapServer, 
GeoServer, 

Deegree, QGIS, 
... 

? no 
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QGIS, NASA 
WorldWind, 

... 

Beyond arrays               

polygon/raster 
    clipping 

yes no no no yes (2D) no no 

Standards support               

ISO SQL MDA yes no no no no no no 

OGC / ISO geo  
    datacubes  
    (coverages) 

yes no no no no no no 

Remarks         "when creating 
overviews of a 
specific factor 
from a set of 

rasters that are 
aligned, it is 

possible for the 
overviews to 

not align.” 

  some funct-
ionality only 
on 1D arrays; 

array size 
limited to less 

than 64 kB, 
array generat-

ion to 2559 
cells; array 

operators in 
function syn-
tax, no infix 
(like "a+b"); 

 
 

 

 Array tools 

 OPeNDAP 
Hyrax 

xarray Tensor-
Flow 

Wendelin 
.core 

Google 
Earth 

Engine 

Open 
Data 
Cube 

xtensor boost:: 
geometry 

Ophidia TileDB 
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Data model                    

Dimensions n-D N-D N-D n-D 2-D 2-D, 3-D N-D N-D N-D n-D  

array  
    extensibility 

no yes all axes, 
in-

memory 

yes ? yes all axes, 
in-

memory 

all axes, 
in-

memory 

yes yes 

cell data  
     types 

numeric 
types 

docs 

unclear, 

assuming 

same as 

numpy 

int, 
float, 
string, 
bool,  

structs 

python 
numeric 

data 
types 

likely 
various 
numeric 

types 

netCDF 
cell data 

types 

C++ 
data 
types 

C++ data 
types 

C prim-
itives? 

Num-

eric 

types, 

fixed 

array, 

variab-

le 

array, 

string 

null values no yes yes 
(placeho

lders) 

no no no no no ? yes 

Data integration                   no 

relational tables yes no no no no no no no no no 

XML stores yes no no no no no no no no no 

RDF stores yes no no no no no no no No Key-

value 

store 

other                     

Domain specific? generic generic machine 
learning 

generic geo raster geo raster astrono
my 

generic generic no 
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horizontal  
    spatial axes 

yes yes no no yes yes no no No no 

height/depth  
     axis 

? yes no no no no no no No no 

time axis yes yes no no no yes no no No   

Processing model                   no 

    query language  
    expressiveness  
    (built-in) 

    no, 
python 
library 

no, 
python 
library 

no, 
functional 

calls, 
python 

and 
JavaScript 

no, client-
side 

python 
calls 

no, C++ 
library 

no, C++ 
library 

no, 
client-
side 

comma
nd line 

or 
python 

no 

formal semantics no no, 

python 

no no no no no no no no 

tightly integrated  
     with SQL or some  
     other QL 

no no no no no no no no no no 

optimizable no no no no to some 
extent 

(see 
physical 
model) 

no no yes yes yes 

subsetting  
    (trim, slice)  

yes no yes yes yes 
(function 

call) 

yes, 
through 
client-
side 

python 

yes In-
memory 

yes no 

common cell  
     operations  

no yes yes yes yes 
(function 

call) 

yes, 
through 
client-

yes In-
memory 

yes no 
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side 
python 

arbitrary new  
    array derivation 

no yes yes yes yes 
(function 

call) 

yes, 
through 
client-
side 

python 

yes In-
memory 

no no 

aggregation yes, with 
NcML 

yes yes yes yes 
(function 

call) 

yes, 
through 
client-
side 

python 

yes In-
memory 

yes no 

array joins no yes yes no yes 
(function 

call) 

no yes yes, main 
memory 

yes, 
INTER-
CUBE 

operat-
ion; re-
quires 

identical 
tiling of 

both 
arrays 

no 

Tomlin's Map Algebra no yes yes, 
through 
python 

user 
code 

no only local yes, 
through 
client-
side 

python 

no no no no 

external function  
invocation  (UDF) 

no yes yes, via 
python 

user 
code 

yes, via 
python 

user code 

not 
invocatio

n from 
within EE 
functions, 

but 
through 

no yes, via 
C++ user 

code 

yes, via 
C++ code 

yes, via 
shell or 
python 

no  



 Array Databases Report  

 - p. 44 -  

own 
wrapping 
code in 

host 
language 

Import / export                    

data formats Import: 
csv, dap-
reader, 
dsp, ff, 

fits, gdal, 
h5, hdf, 

hdf4/5, … 
Export: 

ascii, net-
CDF, Bin-
ary (DAP), 

xml 

large 

number 

of 

formats, 

anything 

that 

python 

can 

understan

d through 

a library 

Export: 
binary 
check-
point 
files 

(state) + 
Saved-
Model; 
import 
from 
same 

no GeoTIFF netCDF no import 
requires 
external 

code 

FITS, 
NetCDF, 

JSON 

no 

data cleansing yes no No no upload of 
massive 

data 
through 
Google 

yes no no ? yes 

array cells update no any cell or 

region 

any cell 
or 

region 

any cell or 
region 

down to 
single cell 

level 

no update 
function-

ality 

any cell 
or 

region 

down to 
single cell 

no 
update 

function
ality 

yes 

Client interfaces                     

domain-independent  C API, 
Web 

request 

 Python python, 
c++, 

java, go 

python, C, 
Fortran 

? python 
API 

C++ C++ python C++ 
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interface 

domain-specific  OGC WCS 
standard 

 No no no ? ? no no ? no 

Beyond arrays                     

polygon/raster 
     clipping 

no  ? no no yes, 2D no no yes no no 

Standards support                     

ISO SQL MDA no no no no no no no no no no 

OGC / ISO geo 
datacubes (coverages) 

WCS 2.0 no no no no no no no no no 

 

 MapReduce 

Data model   

Dimensions N-D N-D 

array extensibility all axes all axes 

cell data types int Bool, int, float, complex, structs 

null values yes Yes 

Data integration   

relational tables no no 

XML stores no no 

RDF stores no no 
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other - - 

Domain specific? generic generic 

horizontal spatial axes yes yes 

height/depth axis yes yes 

time axis yes yes 

Processing model   

query language expressiveness (built-in) yes, functional no, transformations and actions 

formal semantics yes no 

tightly integrated with SQL or some other QL no no 

optimizable yes yes 

subsetting (trim, slice)  yes yes 

common cell operations  ? yes 

arbitrary new array derivation ? yes 

aggregation yes yes 

array joins no no 

Tomlin's Map Algebra no no 

external function invocation  (UDF) no yes, via Java code 

Import / export   
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data formats NetCDF, HDF NetCDF, HDF, CSV 

data cleansing no no 

array cells update ? ? 

Client interfaces   

domain-independent  Java Java, python 

domain-specific  no no 

Beyond arrays   

polygon/raster clipping no not built in 

Standards support   

ISO SQL MDA no no 

OGC / ISO geo datacubes (coverages) no no 
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7.3 Tuning and Optimization 

7.3.1 Criteria 

This level defines how data are managed internally, including storage management, distribution, parallel 

processing, etc. We have looked at both automatic mechanisms (summarized under optimization) and 

administrator (or even user) accessible mechanisms to influence system behavior. 

 Tuning Parameters: 

o Partitioning is indispensable for handling arrays larger than server RAM, and even larger 

than disk partitions. Some systems perform an automatic partitioning, others allow ad-

ministrators to configure partitioning, maybe even through a dedicated storage layout 

language [6] – which obviously is advantageous given the high impact of partitioning on 

query performance [23].  

o Compression: This includes both lossless and lossy compression techniques. Depending 

on the data properties, lossless compression may have little or gigantic impact. For ex-

ample, natural images compress to about 80% of their original volume whereas them-

atic map layers (which essentially are quite sparse binary masks) can compress to about 

5%. Lossy compression may be offered, but is dangerous as it may introduce artifacts – 

think inaccuracies – at tile boundaries. 

o Distribution of either complete arrays or the tiles of an array enables horizontal scaling, 

at the price of dynamic reassembly. In particular, join operations have to be crafted 

carefully to maintain satisfying performance. Therefore, service operators should be 

able to influence placement of arrays and their partitions. 

o Caching: as always in databases, caching can accomplish a significant speed-up. Disting-

uishing factors are: what can be cached and reused – only complete results, or also int-

ermediate results? Does cache content have to be matched exactly, or can approximate 

cache hits be reused? 

 Optimization techniques: 

o Query rewriting: as explained earlier, replacing query expressions by some more effic-

ient method can have a significant impact; further, it frees users from thinking about the 

most efficient formulation. Note that this mechanism requires a query language with 

runtime analysis of incoming code. 

o Common subexpression elimination means that the query engine is able to spot ident-

ical parts within query and evaluate them only once, rather than every time the identical 

subexpression appears. Again, this frees users from thinking about the most efficient 

way of writing their queries. 

o Cost-based optimization estimates the cost of answering a query before actually exe-

cuting it. There is a wide field of opportunities, with a huge potential of improving re-

sponse times. For example, when performing a distributed join “a+b” where both arrays 

are sitting on different nodes – possibly even connected through a high-latency wide-

area networks – then it can make a significant difference whether array a is transported 
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to array b, or b gets transported to a, or a shared approach is pursued. A decision can be 

made base on the actual tiling of both arrays, among other impact factors [5]. 

o Just-in-time compilation of incoming queries generates CPU code that subsequently is 

executed for answering the query. Obviously, such machine code is substantially faster 

than interpreting the query or some script code, like python. It can even be substantially 

faster than precompiled C++ code. This principle can be extended to generating target 

code for multiple cores and for mixed target hardware, such as CPU and GPU. 

o Notably, all the above techniques can be combined advantageously through an intelli-

gent optimizer. 
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7.3.2 Feature Matrix 

 Array DBMS 

 full-stack Array DBMS Add-on array support 

 
Rasdaman SciDB SciQL EXTASCID PostGIS Raster 

Oracle 
GeoRaster 

Teradata 
Arrays 

Tuning Parameters               

partitioning any nD tiling regular nD 
chunking 

no any nD chunking small arrays (100x100 
recommended), query to 

explicitly manage 
assembling larger arrays 

from tiles 

yes (during 
raster 

creation) 

no 

compression several lossy 
and lossless 

methods (zlib, 
RLE, CCITT G4, 
wavelets, ...) 

RLE no no no yes (JPEG, 
DEFLATE) 

no 

distribution automatic query 
distribution, 

peer federation 
(shared nothing) 

yes (shared-
nothing) 

no yes (shared-
memory, shared-

disk servers as 
well as shared-

nothing clusters) 

no yes no 

caching yes, can reuse 
approximate 

matches 

yes, persistent 
chunk caching, 

temporary result 
caching (exact 

match) 

? no no yes no 

Optimization               

query rewriting yes, ~150 rules yes yes no no no no 

common 
    subexpression  

yes ? ? no no no no 
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    elimination 

cost-based 
    optimization 

yes ? ? no no no no 

just-in-time query  
    compilation,  
   mixed hardware 

yes no no no no no no 

 

 Array tools 

     

 
OPeN-
DAP 

xarray 
Tensor-

Flow 
wendelin. 

core 

Google 
Earth 

Engine 

OpenData 
Cube 

xtensor 
boost:: 

geometry 
Ophidia TileDB 

Tuning Parameters                     

partitioning yes, as 
per 

NetCDF 

no no maybe 
indirectly, via 

NEO ZODB 

no no   no no regular  

tiling 

compression yes, as 
per 

NetCDF 

no sparse 
tensor 

no no no   no yes zlib) yes,  

per tile 
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distribution No no yes, with 
Cloud ML 

maybe 
indirectly, via 

NEO ZODB 

no no   no yes yes,  

if the under-

lying VFS 

supports it 

like HDFS 

does 

caching No no yes yes yes yes   no ? yes 

Optimization                     

query rewriting No no no no no no   no no no 

common  
    subexpression  
    elimination 

No no no no yes no   no no no 

cost-based  
   optimization 

No no no no no no   no no no 

just-in-time 
    query comp.,  
    mixed hardware 

No no no no no no no no no no 

 

 MapReduce 

 SciHadoop SciSpark 

Tuning Parameters   

Partitioning yes Yes 

Compression no No 

Distribution yes Yes 

Caching no Yes 
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Optimization     

query rewriting no no 

common subexpression  
     elimination 

no Yes,  
implicit through caching 

cost-based optimization no no 

just-in-time query compilation,  mixed hardware no no 
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7.4 Architectural Comparison 

7.4.1 Criteria 

This section aims at shedding some light on the high-level architecture of the systems and tools. As such, 

there is usually not a “better” or “worse” as in a comparative benchmark – rather, this section is of in-

formative nature. An exception is the list of potential limitations. 

 implementation paradigm: what is the overall architecture approach? 

 storage organization: 

o does the system support partitioning (tiling, chunking) of arrays? 

o does the system support non-regular tiling schemes? Which ones? 

o What mechanisms does the system support for managing data partitioning? 

o can tiles of an array reside on separate computers, while the system maintains a 

logically integrated view on the array? 

o can the system process data maintained externally, not controlled by the DBMS? 

o Can the system process data stored in tape archives? 

 Processing & parallelism: 

o which parallelization mechanisms does the system support: local single thread vs 

multicore-local vs multinode-cluster/cloud vs federation 

o does the system have a single point of failure? 

o federations 

o heterogeneous hardware support 

 Limitations:  Are there any particular known limitations?
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7.4.2 Feature Matrix 

 Array DBMS 

 full-stack Array DBMS add-on Array support 

 
rasdaman SciDB SciQL EXTASCID PostGIS Raster 

Oracle 
GeoRaster 

Teradata 
Arrays 

Architecture paradigm full-stack Array 
DBMS 

implementation 

full-stack Array 
DBMS 

implementation 

SQL + 
proprietary 
extension 

extension 
to GLADE 

SQL + object-
relational types 

Oracle 
proprietary 

SQL + 
UDFs 

Storage organization               

partitioning any nD tiling nD, regular no any nD 
tiling 

done by user 
(and re-

assembled 
through query) 

2D, regular no 

non-regular tiling  any nD tiling no no yes yes (with 
manual re-
assembly in 

query) 

no no 

managing  
    data  
    partitioning 

via query 
language 

via query 
language 

no manually via ingestion 
script 

 

yes no 

tiles on separate  
    computers 

  yes no yes no yes no 

processing on  
    preeexisting archives  
    (with their individual 
    organization) 

yes, any archive 
structure 

no no (data vaults 
come closest, 
but import on 

query) 

no yes  
(out-of-band) 

  no 
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tape archive access yes no no no no ? no 

Processing & parallelism               

parallelization  
    mechanisms  

inter- and intra-
query 

parallelization 

inter- and intra-
query 

parallelization 

inter- and intra-
query 

parallelization 

via GLADE 
engine 

none known yes (Tomlin 
local 

operations) 

no 

single point  
    of failure? 

no yes 
(orchestrator) 

yes ? yes no ? 

Federations yes no no no no no no 

heterogeneous  
     hardware support 

        no   no 

Remarks         recommended 
tile size 100x100 

  array size 
limited to 
less than 

64 kB 
 

 Array tools 

                     

 
OPeNDAP xarray 

Tensor-
Flow 

wendeli
n.core 

Google 
Earth 

Engine 

Open-
Data-
Cube 

xtensor 
boost:: 

geometry 
Ophidia TileDB 

Architecture  
paradigm 

Web 
frontend, 
based on 
DAP prot-
ocol, with 
format-
specific 

processors 
in the 
back-

python 

library 

python 
with 
XLA 

(Acceler
ated 

Linear 
Algebra) 

python 
library 

for 
arrays 
larger 
than 
RAM 

Google 
proprietary 

python + 
xarray 

extension 
to Mathe-

matica 

C++ 
library for 

main-
memory 

array 
handling 

MySQL + 
UDFs + 

MPI 

C++ 

library, 

storage 

manager 

for dense 

& sparse 

multi-

dimensio
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ground nal arrays 

 
Storage 
organization 

                    

partitioning yes, as per 
NetCDF 

no (main 

memory 

centric) 

no yes, via 
NEO 

ZODB, 
but 

array 
agnostic 

yes 
(typically, 
256x256 
pixels to 

match in-
put pre-

processing) 

yes no no no  Yes, 
regular 
tiling 

non-regular  
    tiling  

yes, as per 
NetCDF 

no   no no no no no no no  No 

managing  
    data  
    partitioning 

no no no no internally 
fixed, not 

under user 
control 

via 
ingest-

ion 
script 

 

no no no  Yes 

tiles on  
    separate  
    computers 

no no no yes, via 
NEO 

ZODB 

yes no no no no yes, via 

VFS (virt-

ual file 

system) 

with dist-

ribution 

similar to 

HDFS 

processing on  
    preexisting  
    archives  

no no no no no  
(data must 

sit in 

no no no no  no 
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    (with their 
    individual 
    organization) 

Google) 

tape archive 
access 

no no no no no no no no no no  

Processing & 
parallelism 

                    

parallelization  
    mechanisms  

no yes yes, 
various 
paralleli
zation 

method
s, 

CPU/GP
U 

no yes (Google 
infrastructu

re) 

no   no yes 
("embarra

ssingly 
parallel" 

operation
s, one by 

one) 

 Yes 

single point  
    of failure? 

n.a. yes yes no ? n.a. yes n.a. yes  No 

federations no no no   no no no no no  No 

Heterogeneous 
     hardware 
     support 

no no yes   no no no      No 

Remarks    main 
memory 

main 
memory 

      main 
memory 

of 
desktop 

      

 

 MapReduce 

 
SciHadoop SciSpark 

Architecture paradigm MapReduce MapReduce 
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Storage organization     

partitioning yes, regular tiling chosen by user, and 

based on the partitioning of the input data 

yes, regular tiling chosen by user, and 

based on the partitioning of the input data 

non-regular tiling  no no 

managing data partitioning yes yes 

tiles on separate computers Yes yes 

processing on preeexisting archives (with their 
individual organization) 

Yes yes 

tape archive access No no 

Processing & parallelism     

parallelization mechanisms  yes, MapReduce yes, MapReduce 

single point of failure? yes, NameNode yes, Spark master 

federations No no 

heterogeneous hardware support No yes, GPU (1) 
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7.5 References used 
For the elicitation of the above feature matrices the following references have been used for the 

systems investigated: 

 boost::geometry: 

o boost: http://www.boost.org/doc/libs/1_50_0/libs/geometry  

 EXTASCID: 

o http://faculty.ucmerced.edu/frusu/Projects/GLADE/extascid.html  
o [17][18] 

 Google Earth Engine:  

o Google: https://developers.google.com/earth-engine/  

o [25] 

 OPeNDAP: 

o Opendap: http://docs.opendap.org/index.php/QuickStart  

o Opendap: 

https://opendap.github.io/documentation/UserGuideComprehensive.html#WWW_Inte

rface  

o Opendap: 

https://opendap.github.io/documentation/UserGuideComprehensive.html#NetCDFTool

s  

o Opendap: https://www.unidata.ucar.edu/software/thredds/v4.5/tds/TDS.html  

o Opendap: https://www.opendap.org/support/faq/server/matlab-status  

o Opendap: https://opendap.github.io/hyrax_guide/Master_Hyrax_Guide.html  

 OpenDataCube2: 

o ODC: https://ac.els-cdn.com/S0034425717301086/1-s2.0-S0034425717301086-

main.pdf  

o ODC: http://datacube-core.readthedocs.io/en/latest/ops/config.html#ingestion-config  

o ODC: http://nbviewer.jupyter.org/github/opendatacube/datacube-

core/blob/develop/examples/notebooks/Datacube_Summary.ipynb  

o ODC: https://www.slideshare.net/AmazonWebServices/earth-on-aws-nextgeneration-

open-data-platforms  

 Ophidia: 

o Ophidia: http://ophidia.cmcc.it/documentation/  

 Oracle GeoRaster: 

o Oracle: https://docs.oracle.com/cd/B19306_01/appdev.102/b14254/geor_intro.htm  

o Oracle: https://docs.oracle.com/database/121/GEORS/basic-georaster-

operations.htm#GEORS300  

 PostGIS Raster: 

o PostgreSQL: https://postgis.net/docs/  

                                                           
2
 Open Data Cube is also known as Australian Data Cube, CEOS Data Cube, and some other names: “adoption of 

the AGDCv2 codebase by NASA's Systems Engineering Office for the Committee on Earth Observing Satellites (the 
CEOS-SEO)” 

http://www.boost.org/doc/libs/1_50_0/libs/geometry
http://faculty.ucmerced.edu/frusu/Projects/GLADE/extascid.html
https://developers.google.com/earth-engine/
http://docs.opendap.org/index.php/QuickStart
https://opendap.github.io/documentation/UserGuideComprehensive.html#WWW_Interface
https://opendap.github.io/documentation/UserGuideComprehensive.html#WWW_Interface
https://opendap.github.io/documentation/UserGuideComprehensive.html#NetCDFTools
https://opendap.github.io/documentation/UserGuideComprehensive.html#NetCDFTools
https://www.unidata.ucar.edu/software/thredds/v4.5/tds/TDS.html
https://www.opendap.org/support/faq/server/matlab-status
https://opendap.github.io/hyrax_guide/Master_Hyrax_Guide.html
https://ac.els-cdn.com/S0034425717301086/1-s2.0-S0034425717301086-main.pdf
https://ac.els-cdn.com/S0034425717301086/1-s2.0-S0034425717301086-main.pdf
http://datacube-core.readthedocs.io/en/latest/ops/config.html#ingestion-config
http://nbviewer.jupyter.org/github/opendatacube/datacube-core/blob/develop/examples/notebooks/Datacube_Summary.ipynb
http://nbviewer.jupyter.org/github/opendatacube/datacube-core/blob/develop/examples/notebooks/Datacube_Summary.ipynb
https://www.slideshare.net/AmazonWebServices/earth-on-aws-nextgeneration-open-data-platforms
https://www.slideshare.net/AmazonWebServices/earth-on-aws-nextgeneration-open-data-platforms
http://ophidia.cmcc.it/documentation/
https://docs.oracle.com/cd/B19306_01/appdev.102/b14254/geor_intro.htm
https://docs.oracle.com/database/121/GEORS/basic-georaster-operations.htm#GEORS300
https://docs.oracle.com/database/121/GEORS/basic-georaster-operations.htm#GEORS300
https://postgis.net/docs/
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o PostgreSQL: http://postgis.net/features/  

o PostgreSQL: http://postgis.net/docs/RT_ST_MapAlgebra.html  

o PostgreSQL: http://postgis.net/docs/manual-

dev/using_raster_dataman.html#RT_Raster_Loader  

 rasdaman: 

o rasdaman: www.rasdaman.org  

o [2][3][5][6][7][11][20][34][38][33][31][14][30][3]  

 SciDB: 

o [16][19][42] 
o Paradigm4: https://paradigm4.atlassian.net/wiki/spaces/ESD/overview  
o Paradigm4: https://github.com/Paradigm4  

 SciHadoop: 

o DAMASC research group. 

 SciQL: 

o [47][27] 
o MonetDB: https://en.wikipedia.org/wiki/MonetDB 

 SciSpark: 

o https://scispark.jpl.nasa.gov/ 

o https://databricks.com/blog/2016/10/27/gpu-acceleration-in-databricks.html 

 TensorFlow: 

o Tensorflow: https://www.tensorflow.org/get_started/  
o Tensorflow: https://cloud.google.com/ml-engine/docs/distributed-tensorflow-mnist-

cloud-datalab  

 Teradata Arrays: 

o Teradata: 
https://www.info.teradata.com/HTMLPubs/DB_TTU_14_00/index.html#page/SQL_Refe
rence/B035_1145_111A/ARRAY_Functions.081.001.html  

 wendelin.core: 

o Wendelin.core: https://lab.nexedi.com/nexedi/wendelin.core  

o Wendelin.core: https://www.nexedi.com/wendelin-Core.Tutorial.2016  

o Wendelin.core: https://lab.nexedi.com/nexedi/neoppod/blob/master/README.rst  

 xarray: 

o http://xarray.pydata.org 

o http://xarray.pydata.org/en/stable/why-xarray.html 

o http://xarray.pydata.org/en/stable/generated/xarray.DataArray.dtype.html?highlight=d

type 

o http://xarray.pydata.org/en/stable/generated/xarray.DataArray.isnull.html  

 xtensor: 

o xtensor: https://xtensor.readthedocs.io/en/latest/  
o xtensor: https://github.com/QuantStack/xtensor  

http://postgis.net/features/
http://postgis.net/docs/RT_ST_MapAlgebra.html
http://postgis.net/docs/manual-dev/using_raster_dataman.html#RT_Raster_Loader
http://postgis.net/docs/manual-dev/using_raster_dataman.html#RT_Raster_Loader
http://www.rasdaman.org/
https://paradigm4.atlassian.net/wiki/spaces/ESD/overview
https://github.com/Paradigm4
https://systems.soe.ucsc.edu/projects/damasc#proj1
https://en.wikipedia.org/wiki/MonetDB
https://scispark.jpl.nasa.gov/
https://databricks.com/blog/2016/10/27/gpu-acceleration-in-databricks.html
https://www.tensorflow.org/get_started/
https://cloud.google.com/ml-engine/docs/distributed-tensorflow-mnist-cloud-datalab
https://cloud.google.com/ml-engine/docs/distributed-tensorflow-mnist-cloud-datalab
https://www.info.teradata.com/HTMLPubs/DB_TTU_14_00/index.html#page/SQL_Reference/B035_1145_111A/ARRAY_Functions.081.001.html
https://www.info.teradata.com/HTMLPubs/DB_TTU_14_00/index.html#page/SQL_Reference/B035_1145_111A/ARRAY_Functions.081.001.html
https://lab.nexedi.com/nexedi/wendelin.core
https://www.nexedi.com/wendelin-Core.Tutorial.2016
https://lab.nexedi.com/nexedi/neoppod/blob/master/README.rst
http://xarray.pydata.org/
http://xarray.pydata.org/en/stable/why-xarray.html
http://xarray.pydata.org/en/stable/generated/xarray.DataArray.dtype.html?highlight=dtype
http://xarray.pydata.org/en/stable/generated/xarray.DataArray.dtype.html?highlight=dtype
http://xarray.pydata.org/en/stable/generated/xarray.DataArray.isnull.html
https://xtensor.readthedocs.io/en/latest/
https://github.com/QuantStack/xtensor
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7.6 Performance Comparison 

7.6.1 Systems tested 

The benchmark tests various functionalities, data sizings, and also the effect of parallelization. For this 

report, four systems have been measured: rasdaman, SciDB, PostGIS Raster, and Open Data Cube. These 

represent three Array DBMSs with different implementation paradigms; hence, the choice can be 

considered representative for the field. Open Data Cue was chosen as a representative of array tools 

based on scripting languages. Not present are MapReduce-type systems, due to resource constraints – 

this is left for future investigation. 

Operations benchmarked challenge efficient multi-dimensional data access in presence of tiling as well 

as operations executed on data. For the purpose of this test, focus was on “local operations” as per 

Tomlin’s Map Algebra, i.e.: the result pixel of an array depends on one corresponding pixel in each input 

array (often there is just one input array, in case of array joins there are two input arrays). Operations 

which take one input array and transform each pixel are often characterized as “embarrassingly parallel” 

because each pixel can be processed independently, which allows for an easy distribution across cores 

without the need for respecting Euclidean neighbourhood of pixels. That is the case for more complex 

operations, such as Tomlin’s focal, zonal, and global operations; examples include convolution and 

practically all relevant Linear Algebra operations, such as matrix multiplication, tensor factorization, 

PCA, and the like. In ISO SQL/MDA, for example, a convolution operation on array a using 3x3 kernel k 

would make use of the pattern  

mdarray  [ x(0:m), y(0:n) ] 

elements mdaggregate + 

         over        [ kx(-1:1), ky(-1:1) ] 

         using       a[x+kx,y+ky] * k[kx,ky]  

Once operations are not “embarrassingly parallel” there is a wide open field for implementation ingen-

uity to parallelize them efficiently. In a future version of this benchmark such operations should be test-

ed in addition. Likewise, array joins become non-trivial once the input arrays to be combined convey a 

different tiling. While solutions have been proposed in literature, such as [5], testing this was not subject 

of this evaluation either. Finally, some commercial tools could not be evaluated; a special case is Google 

Earth Engine which only runs as a black box inside the enhanced Google infrastructure so that tool com-

parison on identical hardware is impossible. 

Generally, while comparative benchmarks are among the results most looked at, they are at the same 

time particularly laborious to obtain. The author team has made a best effort to do as much comparison 

as possible – still, it remains a wide open field which certainly deserves further attention in future. Act-

ually, it is planned to continue evaluation work beyond finalization of this report. 

The benchmark code is available as part of the rasdaman source code at www.rasdaman.org.  

7.6.2 Testing approach 

The approach followed is based on and extends current literature on array database benchmarking, such 

as [49][48] [18][50] (in chronological order). A main consensus seems that several categories of perform-

http://www.rasdaman.org/
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ance factors can be distinguished, the most important being: storage access, array-generating operat-

ions, and aggregation operations. Following these categories we have established a series of test situat-

ions that can be translated directly into queries in case of Array Databases, and which need to be pro-

grammed via command line, python, or C++ code for the other tools. For each category several different 

types of queries have been devised:  

 Binary operations combining two arrays, such as “a+b”. Which binary operator this is can be 

considered of less importance here – we randomly chose addition. The queries cover different 

array dimensions and array operands with both matching and mismatching tiles.  

 Binary operations applying some scalar to an array, like “a+5”; again, we chose addition as the 

representative tested.  

 Domain-modifying operations which do not change the array values as such, like shift, extend, 

and band combination (e.g., combining three images into a 3-band RGB).  

 Subsetting operations involving slicing, trimming, and mixed on 2-D and 3-D arrays. While sub-

setting is also a domain modifying operation we put it in its own category due to its importance 

and versatility. 

 Unary operations like sine calculation, type casting, and array aggregation.  

 “Blocking” operations which require materializing the whole array before they can be evaluated.  

 The CASE statement and concatenation are somewhat special operations that do not fit well in 

the other categories.  

Each query class in turn has several variations differing in the size of the arrays involved (40 kB - 4 GB), 

number of tiles per array (1 – 10,000 tiles), the size of the output array, etc. The table below lists the 

queries, expressed in the syntax of ISO SQL/MDA.  

Table 1: Array benchmark queries 

ID Description Query 

B1 Sum of the array’s elements  MDSUM(c)  

B2 
For each element in an array the result element 
is 1 if its value is 0, otherwise the result is the 
common logarithm of its value  

CASE 

  WHEN c = 0 THEN 1 

  ELSE LOG10(c)  

END  

B3 Cast all elements to unsigned 8-bit values  MDCAST(c AS char)  

B4 Concatenate two arrays along the first axis  MDCONCAT(c, c, 1)  

B5 Encode an array to TIFF  
MDENCODE(c, 

         "image/tiff")  

B6 
Extend the spatial domain of an array to twice its 
width and height  

MDRESHAPE(c, 

  [ 0:MDAXIS HI(c,x)*2, 

    0:MDAXIS HI(c,y)*2 

  ] 

)  

B7 Add two 1-D arrays with mismatching tiles c + d  

B8 Add two 2-D arrays with matching tiles c + c  
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B9 Add two 2-D arrays with mismatching tiles  c + d  

B10 
Add the average value of an array to all of its 
elements  

c + MDAVG(c)  

B11 
Add a constant scalar value to all elements of an 
array  

c + 4  

B12 Add two 3-D arrays with mismatching tiles  c + d  

B13 Calculate all percentiles  MDQUANTILE(c, 100)  

B14 Join several arrays into a single multi-band array  

MDJOIN( 

  c, 

  MDARRAY MDEXTENT(c) 

  ELEMENTS 3, c 

)  

B15 Scale-up (2x) an array  

MDSCALE( 

  c, 

  [ MDAXIS LO(c,x) 

  : MDAXIS HI(c,x)*2, 

  MDAXIS LO(c,y) 

  : MDAXIS HI(c,y)*2 

  ] 

)  

B16 
Shift the spatial domain by a given shift 
coordinate  

MDSHIFT(c, [500, -1000])  

B17 Calculate the sine of every element in an array  SIN(c)  

B18 Subset the whole spatial domain  c[*:*,*:*]  

B19 Select a single element at a particular coordinate  c[5, MDAXIS HI(c,y) - 5]  

B20 Slice the first axis at a particular point  

c[5, 

    MDAXIS LO(c,y) + 3 

  : MDAXIS HI(c,y) – 3 

 ]  

B21 Trim down both axes  

c[ MDAXIS LO(c,x) + 3 

 : MDAXIS HI(c,x) - 3, 

   MDAXIS LO(c,y) + 3 

 : MDAXIS HI(c,y) – 3 

 ]  

B22 
Slice the first axis of a 3-D array at a particular 
point  

c[ MDAXIS HI(c,z), 

   MDAXIS LO(c,x) + 3 

 : MDAXIS HI(c,x) - 3, 

   MDAXIS LO(c,y) + 3 

 : MDAXIS HI(c,y) – 3 

 ]  
 

7.5.3 The Benchmarks  

The benchmark was run on the following systems: 

 Open Data Cube 1.5.4 
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 PostGIS Raster 2.4.1 (all GDAL drivers enabled) on top of PostgreSQL 9.6.6 

 rasdaman v9.5  

 SciDB 16.9 

All the Bx tests of the previous section have been executed on each system, as far as supported. Values 

missing indicate this – for example, test B5 performs data format encoding not available in SciDB.  

Every run was repeated 10x and then averaged.  

The machine on which the benchmark has been evaluated has the following characteristics: 

 OS: Ubuntu 14.04 

 CPU: Intel Xeon E5-2609v3 @ 1.90GHz; 2x 6-core CPUs, 16MB L3 cache, 256kB L2, 32kB L1 

 RAM: 64GB DDR4 2133MHz 

 Disk: SSD, read speed 520 MB/sec 

7.6.4 Assessment 

Results are shown in Fig. 8. Surprisingly, runtime results were quite divergent, therefore the time scale is 

logarithmic.  

As it turns out the technology landscape around Array Databases is quite varied, ranging from full-stack 

from-scratch implementations over object-relational DBMS add-ons to MapReduce add-ons, and all in 

between.  In this line-up of 19 array tools many are natively designed as a service while some of them 

comprise command line tools or libraries which are not complete services, but may aid in developing 

services. Technologies were evaluated through 

 a feature walk-through addressing functionality (logical model), tuning and optimization 

(physical level), and architecture; 

 a comparative benchmark  between selected systems. 

Investigation, for resource reasons, could only cover storage access and “embarrassingly parallel” oper-

ations; what is left for future research are operations whose parallelization is more involved, including 

general Linear Algebra and joins. Nevertheless, some interesting facts can be observed. 

Overall, a clear ranking is visible with rasdaman being fastest, followed by Open Data Cube (up to 74x 

slower), PostGIS Raster (up to 82x slower), and SciDB (up to 304x slower), in sequence.  
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Fig. 8. Performance comparison of rasdaman, PostGIS Raster, Open Data Cube, and SciDB  
(time axis logarithmic, secs; missing values represent tests not supported by the target system). 
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Systems offering a query language were easier to benchmark – tests could be formulated, without any 

extra programming, in a few lines sent to the server. Without query languages, extra programming 

effort was necessary which sometimes turned out quite involved. Functionality offered consisted of pre-

cooked functions which may or may not meet user requirements – in this case: our test queries. Effect-

ively, this extra burden was one reason why several systems could not be evaluated. For a system choice 

this means: such tools will offer only focused functionality and still leave significant burden to the user. 

Hence, extrapolating the notion of “analysis-ready data” we demand “analysis-ready services” which 

stand out through their flexibility to ask any (simple or complex) query, any time. 

Compiled languages like C++ still seem to offer significant performance advantages over scripting lang-

uages like python. In a direct comparison, a C/C++ implementation was found to be faster by an order of 

magnitude over python code [32]. The first system, rasterio, uses python only as its frontend with C/C++ 

based GDAL as its workhorse.  The second one, ArcPy, relies on a pure python implementation under-

neath, namely numpy. 

UDFs can be very efficient in main memory, but general orchestration tasks of the DBMS – like storage 

access in face of tiling and distribution as well as allowing arbitrary queries, rather than a predefined set 

of UDF functionality – still remains an issue. Implementers obviously tend to prefer add-on architectures 

where array functionality is built on top of existing systems which offer targeted features like parallelism 

(such as Hadoop and Spark) or persistent storage management (like relational DBMSs). However, as 

these base layers are not array-aware such architectures at least today do not achieve a performance 

and flexibility comparable to full-stack implementations as the comparison shows. 

While a hands-on evaluation of MapReduce type systems was not possible within this study there is rel-

evant work at XLDB 2018 on a comparison of ArrayUDF (an array processing framework built on UDFs in 

databases, from the same group doing EXTASCID) with Spark [46]. Authors report that “In a series of 

performance tests on large scientific data sets, we have observed that ArrayUDF outperforms Apache 

Spark by as much as 2070X on the same high-performance computing system”.  We need to bear in 

mind, though, that a pure UDF without a query language constitutes just a fixed block of code perform-

ing one task – this is relatively easy to keep under control and parallelize whereas orchestration of some 

arbitrary query can change the performance picture substantially. 

Generally, there seems to be a performance hierarchy with full-stack, from-scratch C++ implementations 

being fastest, followed by mixed implementations combining UDFs (read: handcrafted implementation) 

with a database-style orchestration engine, followed by add-ons to Hadoop / Spark, followed by object-

relational add-ons.   
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8 Summary 
With this report, RDA hopes to provide a useful basis for choosing technology when it comes to flexible, 

scalable analytics on massive spatio-temporal sensor, image, simulation, and statistics data. Such arrays 

constitute a large part of today’s Big Data, forming a basic data category next to sets, hierarchies, and 

general graphs.  In view of the known challenges in functionality, performance, scalability, and interop-

erability serving these arrays in a user-friendly way is a major challenge today.  

Array Databases seem promising in that they provide the advantage-proven features of a declarative 

query language for “shipping code to data”, combined with powerful techniques for efficient server-side 

evaluation, with parallelization being just one out of a series of known methods for speed-up and scal-

ability. 

In this study, we have provided on introduction and overview of the state of the art in Array Databases 

as a tool to serve massive spatio-temporal “datacubes” in an analysis-ready manner. Relevant datacube 

standards were listed, together with secondary information for further studies and immersion. Uptake 

of this report’s research consists of several Big Data services with Petabyte offerings, with further ones 

emerging continuously. Actually, already in its preparation phase this report has found high interest; the 

report’s Wiki access statistics indicate more than 12,000 page reads as of February 23, 2018. 

The line-up of 19 different tools is an unprecedented technology overview for this emerging field. Array 

Databases, command line tools and libraries, as well as MapReduce-based tools have been assessed 

comparatively, with a clear provenance for all facts elicited. For some tools, a comparative performance 

analysis has been conducted showing that full-stack, clean-slate array C++ implementations convey high-

est performance; python constitutes a basis that comes with a performance penalty upfront, and like-

wise add-on implementations that reuse not array aware architectures (such as object-relational extens-

ions and MapReduce) to emulate array support – although, admittedly, these are faster and easier to 

implement. Generally, implementation of the full stack of Array Databases in some fast, compiling 

language (like C++) pays off, although it requires a significant implementation effort. 

In summary, Array Databases herald a new age in datacube services and spatio-temporal analysis. With 

their genuine array support they are superior to other approaches in functionality, performance, and 

scalability, and supported by powerful “datacube” standards. Query functionality is independent from 

the data encoding, and data can be delivered in the format requested by the user. Our benchmark re-

sults are in line with the increasing number of Array Database deployments on Earth science data in 

particular, meantime far beyond the Petabyte frontier. 

With the advent of the ISO SQL/MDA standard as the universal datacube query language a game change 

can be expected: implementers have clear guidance, which will lead to increased interoperability (which 

today effectively does not exist between the systems – only one currently supports relevant standards). 

Applications become easily manageable across all domains, and a natural integration with metadata is 

provided through the SQL embedding. Further, standardization will form an additional stimulus for both 

open-source and proprietary tool developers to jump on this trending technology.  

https://www.rd-alliance.org/group/array-database-assessment-wg/wiki/array-database-assessment-working-group
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Such data integration will be of paramount importance in future. Standalone array stores form just an-

other silo, even with query capabilities. It will be indispensible to integrate array handling into the meta-

data paradigms applications like to use. As of today, work on array integration has been done on 

 sets: the ISO SQL/MDA standard, which is based on the rasdaman query language, integrates 

multi-dimensional arrays into SQL [34]; 

 hierarchies: the xWCPS language extends the OGC WCPS geo array language with metadata 

retrieval [29]; 

 (knowledge) graphs: first research has been done on integration arrays into RDF/SPARQL 

databases [2]. 

Still, despite its breadth, this report uncovers the need for further research. In particular, a deep comp-

arison of the fundamentally different architectures of Array Databases and MapReduce oriented syst-

ems should be of high interest.  

Obviously, Michael Stonebraker’s observation of “no one size fits all” is very true also for array support  

– as arrays form a separate fundamental data structure next to sets, hierarchies, and graphs, they re-

quire carefully crafted implementations to deliver the usability in terms of flexibility, scalability, per-

formance, and standards conformance which is essential for abroad uptake. Genuine Array Database 

technology, therefore, appears most promising for spatio-temporal datacubes, as this study indicates. 
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