
 Array Databases Report

 - p. 1 -

Array Databases:
Concepts, Standards, Implementations

Peter Baumann1, Dimitar Misev1, Vlad Merticariu1, Bang Pham Huu1, Brennan Bell1, Kwo-Sen Kuo2

1 Jacobs University
Large-Scale Scientific Information Systems Research Group

Bremen, Germany
{p.baumann,d.misev,v.merticariu,b.phamhuu,b.bell}@jacobs-

university.de

2 Bayesics, LLC / NASA

USA
kwo-sen.kuo@nasa.gov

Corresponding author: Peter Baumann, p.baumann@jacobs-university.de

This report is proposed for an official RDA Recommendation

produced by the RDA Array Database Assessment Working Group.

https://www.jacobs-university.de/lsis
mailto:kwo-sen.kuo@nasa.gov
mailto:p.baumann@jacobs-university.de

 Array Databases Report

 - p. 2 -

Executive Summary
Multi-dimensional arrays (also known as raster data or gridded data) play a core role in many, if not all

science and engineering domains where they typically represent spatio-temporal sensor, image, simulat-

ion output, or statistics “datacubes”. However, as classic database technology does not support arrays

adequately, such data today are maintained mostly in silo solutions, with architectures that tend to

erode and have difficulties keeping up with the increasing requirements on service quality.

Array Database systems attempt to close this gap by providing declarative query support for flexible ad-

hoc analytics on large n-D arrays, similar to what SQL offers on set-oriented data, XQuery on hierarchical

data, and SPARQL or CIPHER on graph data. Today, Petascale Array Database installations exist, employ-

ing massive parallelism and distributed processing. Hence, questions arise about technology and stand-

ards available, usability, and overall maturity.

To elicit the state of the art in Array Databases, Research Data Alliance (RDA) has established the Array

Database Assessment Working Group (ADA:WG) as a spin-off from the Big Data Interest Group, technic-

ally supported by IEEE GRSS. Between September 2016 and March 2018, the ADA:WG has established an

introduction to Array Database technology, a comparison of Array Database systems and related tech-

nology, a list of pertinent standards with tutorials, and comparative benchmarks to essentially answer

the question: how can data scientists and engineers benefit from Array Database technology?

Investigation shows that there is a lively ecosystem of technology with increasing uptake, and proven

array analytics standards are in place. Tools, though, vary greatly in functionality and performance as in-

vestigation shows. While systems like rasdaman are Petascale proven and parallelize across 1,000+

cloud nodes, others (like EXTASCID) still have to find their way into large-scale practice. In comparison to

other array services (MapReduce type systems, command line tools, libraries, etc.) Array Databases can

excel in aspects like service friendliness to both users and administrators, standards adherence, and

often performance. As it turns out, Array Databases can offer significant advantages in terms of flexibil-

ity, functionality, extensibility, as well as performance and scalability – in total, their approach of offer-

ing “datacubes” analysis-ready heralds a new level of service quality. Consequently, they have to be con-

sidered as a serious option for “Big DataCube” servicees in science, engineering and beyond.

The outcome of this investigation, a unique compilation and in-depth analysis of the state of the art in

Array Databases, is supposed to provide beneficial insight for both technologists and decision makers

considering “Big Array Data” services in both academic and industrial environments.

 Array Databases Report

 - p. 3 -

Table of Contents
Executive Summary ... 2

1 Introduction .. 5

1.1 Why Do We Need "Arrays"? ... 5

1.2 Why Array Databases? .. 6

2 Array Database Concepts .. 9

2.1 The Array Model ... 9

2.2 Querying Arrays .. 9

2.3 Array Database Architectures ... 13

2.4 Client interfacing ... 16

2.5 Related Technology ... 16

3 Open Data, Open Source, Open Standards ... 17

3.1 Open Data ... 17

3.2 Open Source .. 17

3.3 Open Standards ... 18

3.4 Conclusion ... 18

4 Array Standards ... 20

4.1 Domain Neutral ... 20

4.2 Earth & Planetary Sciences ... 20

5 Array Technology .. 22

5.1 Array Database Systems and Related Technologies ... 22

6 Publicly Accessible Array Services ... 31

7 Array Systems Assessment.. 33

7.1 Systematics ... 33

7.2 Functional Comparison ... 33

7.3 Tuning and Optimization ... 48

7.4 Architectural Comparison ... 54

7.5 References used .. 60

7.6 Performance Comparison ... 62

8 Summary ... 68

References .. 70

 Array Databases Report

 - p. 4 -

 Array Databases Report

 - p. 5 -

1 Introduction

"The speed at which any given scientific discipline advances will depend

on how researchers collaborate with one another, and with technologists,

in areas of eScience such as databases[...]" -- The Fourth Paradigm

1.1 Why Do We Need "Arrays"?
The significant increase in scientific data that occurred in the past decade – such as NASA’s archive

growth from some hundred Terabytes in 2000 [24] to 32 Petabytes of climate observation data [45], as

well as ECMWF’s climate archive of 220 Petabytes [22] – marked a change in the workflow of

researchers and programmers. Early approaches consisted mainly of retrieving a number of files from an

FTP server, followed by manual filtering and extracting, and then either running a batch of computation

processes on the user’s local workstation, or tediously writing and optimizing sophisticated single-use-

case software designed to run on expensive supercomputing infrastructures. This is not feasible any

more when dealing with Petabytes of data which need to be stored, filtered and processed beforehand.

When data providers discovered this they started providing custom tools themselves, often leading to

silo solutions which turn out to erode over time and make maintenance and evolution hard if not

impossible. An alternative finding attention only recently are database-centric approaches, as these

have shown significant potential; meantime, we find both small institutions [35] and large data-centers

[22] using modern database architectures for massive spatio-temporal data sets.

Arrays - also called "raster data" or "gridded data" or, more recently, "datacubes" [8] - constitute an

abstraction that appears in virtually all areas of science and engineering, and even beyond:

 Earth sciences: 1-D sensor data, 2-D satellite imagery, 3-D x/y/t image timeseries and x/y/z

subsurface voxel data, 4-D x/y/z/t climate and weather data; etc.

 Life sciences: microarray data, image modalities like X-ray, sonography, PET, and fMRI delivering

2-D and increasingly 3-D data about human and non-human brains and further organs; 2-D

through 4-D gene expression data; etc.

 Space sciences: optical and radio telescope data; 4-D x/y/z/t cosmological simulation output;

planetary surface and subsurface data; etc.

 Statistics: "Datacubes" are known since long in the context of Data Warehousing and OLAP [15]

where, instead of spatial, abstract axes are defined, usually together with a time axis. A main

difference to the above data is that statistical datacubes are rather sparse (say, 3% - 5% of the

data space is occupied by values) whereas Earth, Space, and Life science and engineering data

tend to be rather dense, often completely dense (i.e., most or all cell positions in the grid hold

some non-null value).

Fig. 1 gives an impression of the variety of different observed data specifically in Ocean science.

Generally, arrays typically represent sensor, image, simulation, and statistics data of spatio-temporal or

"abstract" dimensions.

http://research.microsoft.com/en-us/collaboration/fourthparadigm/

 Array Databases Report

 - p. 6 -

Fig. 1. Integrating a variety of data sources and types in an Ocean Science Interoperability Experiment
(source: OGC membership)

1.2 Why Array Databases?
For decades now, SQL has proven its value in any-size data services in companies as well as public ad-

ministration. Part of this success is the versatility of the query lanuage approach, as well as the degree of

freedom for vendors to enhance performance through server-side scalability methods. Unfortunately,

scientific and engineering environments could benefit only to a limited extent. The main reason is a

fundamental lack in data structure support: While flat tables are suitable for accounting and product

catalogues, science needs additional information categories, such as hierarchies, graphs, and arrays. The

consequence of this missing support has been a historical divide been ”data” (large, constrained to

download, no search) and ”metadata” (small, agile, searchable).

Still, databases have worked out some key components of a powerful, flexible, scalable data manage-

ment; these principles have proven successful over decades1 on sets (relational DBMSs), hierarchical

data (e.g., XML databases), graph data (e.g., ontology and graph databases), and now array databases

are offering their benefits as well:

 A high-level query language allows users (typically: application developers such as data scient-

ists) to describe the result, rather than a particular algorithm leading to this result. For example,

a two-line array query typically would translate into pages of procedural code. In other words:

1
 Also NoSQL approaches, while initially denying usefulness of high-level query languages, are gradually (re-)

introducing them – see MongoDB, Hive, Pig, etc.

 Array Databases Report

 - p. 7 -

users do not need to deal with the particularities of programming. The data center, conversely,

has a safe client interface – accepting any kind of C++ or python code and running it inside the

firewall is a favorite nightmare of system administrators.

 Transparent storage management (“data independence”). While this idea sometimes still is

alien to data centers which are used to knowing the location of each byte on disk this transpar-

ency has the great advantage of (i) simplifying user access and (ii) allowing to reorganize intern-

ally without affecting users – for example, to horizontally scale a service. And, honestly: in a

JPEG file, do we know the location of a particular pixel? We can operate them well without

knowing these details.

 Concurrency and access control. Given that a large number and variety of users are querying

large amounts of data it is indispensable to manage access. Avoiding inconsistencies due to par-

allel modifications of data is addressed by concurrency control with transaction support. Role-

based access control allows adjusting access for user groups individually. Particularly with

arrays, granularity of access control must go below object level for selectively managing access

to arbitrary areas within datacubes, essentially performing access control down to pixel level.

Also, due to the high processing load that array queries may generate it is important to enforce

quota.

Array databases [9] provide flexible, scalable services on massive multi-dimensional arrays, consisting of

storage management and processing functionality for multi-dimensional arrays which form a core data

structure in science and engineering. They have been specifically designed to fill the gaps of the relation-

al world when dealing with large binary datasets of structured information and have gained traction in

the last years, in scientific communities as well as in industrial sectors like agriculture, mineral resource

exploitation etc. 1-D sensor data, 2-D satellite and medical imagery, 3-D image timeseries, 4-D climate

models are all at the core of virtually all science and engineering domains. The currently most influential

array database implementations are, in historical order, rasdaman [10][12][20][20][7][38] and SciDB

[16][19]; Fig. 2 gives a brief outline on the historical development of this field. Each of them allows

querying the data based on the array’s properties and contents using declarative languages that usually

allow for a large degree of flexibility in both query formulization and internal query optimization tech-

niques. Processing of arrays is core functionality in such databases with large sets of operations, ranging

from simple sub-setting up to statistics, signal and image processing, and general Linear Algebra. A first

Array Database workshop has been held in Uppsala in 2011 [4].

 Array Databases Report

 - p. 8 -

Fig. 2. Early history of Array Databases

The remainder of this report is organized as follows. In the next section we introduce to the concepts of

array querying. In Section X we provide a brief discussion of open data versus open source versus open

standards. An overview on Array (database) standards is given in Section X, followed by an overview of

technology currently available in Section X and a slate of publicly accessible array (database) services in

Section X. In Section X we provide a technical comparison of the various technologies. Section X conclud-

es the report.

 Array Databases Report

 - p. 9 -

2 Array Database Concepts
This section can be skipped safely, it is helpful but not strictly necessary to understand the analysis

provided lateron.

2.1 The Array Model
Formally, a d-dimensional array is a function a: D → V with a domain consisting of the d-fold

Euclidean cross product of closed integer intervals:

D = {lo1, …, hi1} … {lod, …, hid} with loi≤hii for 1≤i≤d

where V is some non-empty value set, called the array’s cell type. Single elements in such an array we

call cells. Arrays sometimes are popularly referred to as datacubes emphasizing the higher dimensions,

from 3 onwards. Still, the concept encompasses all dimensions, including 1-D and 2-D (0-dimensional

arrays constitute a border case which can be considered as a single value - it is more or less a matter of

taste whether to consider them arrays or not).

This understanding is identical to mathematics where vectors (or sequences) represent 1-D arrays,

matrices form 2-D arrays, and tensors represent higher-dimensional arrays.

Tomlin has established a so-called Map Algebra [43] which categorizes array operations depending on

how many cells of an input array contribute to each cell of the result array; here is an excellent

compressed introduction. While Map Algebra was 2-D and has been extended to 3-D lateron, AFATL

Image Algebra [39] is n-dimensional by design. Array Algebra [11] has been influenced by AFATL Image

Algebra when establishing a formal framework for n-D arrays suitable for a declarative query language.

2.2 Querying Arrays
Although array query languages heavily overlap there is not yet a common consensus on operations and

their representation. For the brief introduction we rely on Array Algebra [11] because it is a powerful,

minimal formal framework of well understood expressiveness and also forms the theoretical under-

pinning of the forthcoming ISO Array SQL standard, SQL/MDA (see standards section). In passing we

note that array operations, being 2nd order with functions as parameters, introduce functionals. Array

Algebra relies on only three core operators: An array constructor, an aggregator, and an array sort oper-

ation (which we skip for this introduction). We introduce these in turn, based on the ISO SQL/MDA

syntax.

2.2.1 Deriving arrays

The mdarray operator creates an array of a given extent and assigns values to each cell through some

expression which may contain occurrences of the cell’s coordinate. Sounds complicated? Let us start

simple: assume we want to obtain a subset of an array A. This subset is indicated through array coordin-

ates, i.e., we extract a sub-array. For a d-dimensional array this subset can be defined through a d-dim-

ensional interval given by the lower corner coordinate (lo1, ..., lod) and upper corner coordinate

(hi1,...,hid), respectively. To create the subset array we write

 Array Databases Report

 - p. 10 -

mdarray [x(lo1:hi1, ..., lod:hid)]

elements a[x]

This extraction, which retains the dimensionality of the cube, is called trimming. Commonly this is

abbreviated as

a[lo1:hi1, ..., lod:hid]

We can also reduce the dimension of the result by applying slicing in one or more coordinates. This

means, instead of the loi:hii interval we provide only one coordinate, the slice position si. Notably, if

we slice d times we obtain a single value (or, if you prefer, a 0-D array), written as:

mdarray [x(s1, ..., sd)]

elements a[x]

or in its shorthand

a[s1, ..., sd]

which resembles the common array cell access in programming languages. Fig. 3 shows some examples

of trimming and slicing on a 3-D array.

Fig. 3. Various types of subsetting from an array: trimming (left, which keeps the original dimension) and
slicing (which reduces the number of dimensions, right)

Now let as assume we want to change the individual cell values rather than doing extraction, for

example deriving the logarithm of some input array of given domain extent D with axes ax and y:

mdarray mdextent(D)

elements log(a[x,y])

An example for a binary operator is addition of two images:

 Array Databases Report

 - p. 11 -

mdarray mdextent(D)

elements a[x,y] + b[x,y]

In fact, any unary or binary operation defined on the input arrays’ cell types "induces" a corresponding

array operation. For binary operations - also referred to as array joins - we require that both operand

arrays share the same spatial extent so that the pairwise matching of array cells is defined. Syntactically,

we abbreviate such marray operations so that the above example can be written as

a + b

With this simple rule we have obtained already all the well-known arithmetic, Boolean, exponential, and

trigonometric operations.

Extending binary to n-ary functions we find two practically useful operations, the case and concat

operators. Following the syntax of SQL we can write an array case (or "if" operator) as in the following

example which performs a traffic light classification of array values, based on thresholds t1 and t2:

case

 when a > t2 then {255,0,0}

 when a > t1 then {0,255,255}

 else {0,255,0}

end

Another useful operation is array concatenation. We define, for two arrays a with domain A and b with

domain B,

a concat b := mdarray x in (A union B)

 elements case

 when x in A then a[x]

 else b[x]

 end

Obviously, the union of the input domains must be a valid array domain again. It is straightforward to

extend concatenation to an n-ary function provided the input array domains altogether form a valid

array partition.

2.2.2 Aggregating arrays

All the above operations have served to derive a new array from one or more given arrays. Next, we

look at the condenser which - in analogy to SQL aggregation - allows deriving summary values. The gen-

eral condenser iterates over an array covering the domain indicated and aggregates the values found;

actually, each value can be given by a location-aware expression. The following example adds all cell

values of a in domain D with axes x and y (which obviously must be equal to or contained in the domain

of array a):

 Array Databases Report

 - p. 12 -

mdaggregate +

over mdextent(D)

using a[x,y]

This can be abbreviated as

sum(a)

Not all operations can act as condensers as they must be form a monoid in order for the aggregation to

work. Common candidates fulfilling this criterion are sum, avg, min, max, exists, and forall.

2.2.3 Operator combinations

The operators illustrated can all be combined freely to form expressions of arbitrary complexity. We

demonstrate this through two examples.

Example 1: The matrix product of a and b, yielding an result matrix of size mp.

mdarray mdextent(i(0:m), j(0:p))

elements mdaggregate +

 over mdextent(k(0:n))

 using a [i, k] * b [k, j]

Example 2: A histogram over an 8-bit greyscale image.

mdarray mdextent(bucket(0:255))

elements mdcount(img = bucket)

This way, general operations from image / signal processing, statistics, and Linear Algebra (up to, say,

the Discrete Fourier Transform) can be expressed.

2.2.4 Array integration

Some systems operate on arrays standalone, others integrate them into a host data model, typically:

relations. Following ISO SQL we embed arrays into the relational model as a new column type which is

shared by the majority of systems such as rasdaman, PostgreSQL, Oracle, and Teradata. This offers

several practical advantages, such as a clear separation of concerns in query optimization and evaluation

which eases mixed optimization [34]. For example, we can define a table of Landsat images as follows:

create table LandsatScenes(

 id: integer not null,

 acquired: date,

 scene: row(band1: integer, ..., band7: integer)

 mdarray [0:4999,0:4999]

)

which can be queried like this example shows:

select id, encode((scene.band1-scene.band2)

 / (scene.band1+scene.band2)), "image/tiff")

 Array Databases Report

 - p. 13 -

from LandsatScenes

where acquired between "1990-06-01" and "1990-06-30" and

 mdavg(scene.band3-scene.band4)/(scene.band3+scene.band4))>0

A notable effect is that now data and metadata reside in the same information space and can be

accessed and combined in one and the same query. Hence, in future the age-old distinction between

data and metadata can be overcome.

2.3 Array Database Architectures

2.3.1 Storage

Access patterns on arrays are strongly linked to the Euclidean neighborhood of array cells (Fig. 4),

therefore it must be a main goal of any storage engine to preserve proximity on persistent storage

through some suitable spatial clustering. It is common, therefore, to partition n-D arrays into n-D sub-

arrays called tiles [12] or chunks [40] which then form the unit of access to persistent storage.

Fig. 4. n-D Euclidean neighborhood of array cells

Obviously, the concrete partitioning chosen greatly affects disk traffic and, hence, overall query

performance. By adjusting the partitioning – statically in advance or dynamically at query time – to the

workloads, the number of partitions fetched from persistent storage can be minimized, ideally: to a

single disk access (Fig. 5). The challenge is to find a partitioning which supports a given workload. For

example, when building x/y/t remote sensing data cubes imagery comes in x/y slices with a thickness of

1 along t. Time series analysis, on the contrary calls for cutouts with long time extent and (possibly)

limited spatial x/y extent.

While this principle is generally accepted partitioning techniques vary to some extent. PostGIS Raster

allows only 2D x/y tiles and suggests tile sizes of 100x100 pixels [37]. Teradata arrays are limited to less

than 64 kB [44]. SciDB offers a two-level partitioning where smaller partitions can be gathered in cont-

ainer partitions. Further, SciDB allows overlapping partitions so that queries requiring adjacent pixels

(like in convolution operations) do not require reading the neighboring partitions [41]. In rasdaman, a

storage layout sublanguage allows to define partitioning along several strategies [6]. For example, in

“directional tiling” ratios of partition edge extents are indicated, rather than absolute sizes; this allows

to balance mixed workloads containing, e.g., spatial timeslice extraction and temporal timeseries analys-

 Array Databases Report

 - p. 14 -

is. In the “area of interest tiling” strategy, hot spots are indicated and the system automatically determ-

ines an optimal partitioning.

Fig. 5. Sample tiling of 2-D and 3-D arrays (left) and
rasdaman tiling strategies area-of-interest, regular, and directional (right)

To quickly determine the partitions required – a typical range query – some spatial index, such as the R-

Tree, proves advantageous. As opposed to spatial (i.e., vector) databases the situation with arrays is

relatively simple: the target objects, which have a box structure (as opposed to general polygons),

partition a space of known extent. Hence, most spatial indexes can be expected to perform decently.

Often, compression of tiles is advantageous [20]. Still, in face of very large array databases tertiary

storage may be required, such as tape robots [40][38].

2.3.2 Processing

When it comes to query evaluation it turns out that, in general, array operations are heavily CPU bound;

this is contrary to relational query processing which typically is I/O bound. Some array operations are

trivially parallelizable, such as cell-wise processing and combination (which Tomlin [43] calls “local”

operations) and simple aggregations. These can easily be distributed both on local processing nodes like

multicore CPUs and general-purpose GPUs and remote nodes, like servers in a cloud network. Others

have to be carefully analyzed, transformed and sometimes even rewritten in different sets of operations

to gain such parallelizable characteristics, e.g. joins on differently partitioned arrays, histogram

generators and, in general, array constructors with non-serial access patterns.

The following is a non-exhaustive list of optimizations proven effective in Array DBMSs:

 Parallelization. The fact that array operations involve applying the same operation on a large

number of values, and also the observation that tiles map naturally to CPU cores sometimes

leads to the hasty conclusion that array operations per se are "embarrassingly parallel". While

this holds for simple operations, such as unary induced operations like "log(a)", this is by far not

true in general. Already binary operations like "a+b" pose challenges - for example, both oper-

and arrays can reside on different nodes, even data centers, and they may have an incompatible

tiling which calls for advanced methods like Array Join [5]. Additional complexity, but also opp-

ortunities, comes with Linear Algebra operations ranging from matrix multiplication over QR

decomposition up to Fourier Transform and PCA, to randomly pick a few examples.

Parallelization across several cores in one compute node (effectively, a shared-all architecture)

allows exploiting vertical scalability; distributed processing utilizes the same principle of sharing

 Array Databases Report

 - p. 15 -

workloads, but across several compute nodes (shared-nothing architecture) – in case of a cloud,

typically homogeneous nodes sitting close by, in the case of federations among data centers

heterogeneous nodes with individual governance and higher-latency network connections. Crit-

eria for splitting queries across multiple systems may include data location, intermediate results

transfer costs, current resource availability, and several more.

 Mixed hardware. Compiling queries into code for CPU, GPU, FPGA, etc. can greatly speed up

processing time. However, mixed hardware evaluation poses non-trivial problems which still are

under active research.

 Approximative caching. Caching the results of final and intermediate processing steps helps sig-

nificantly in case where the same or similar queries come in frequently. For example, during dis-

asters there will be lots of queries on the disaster region, issued by mitigation forces and the

general public. With arrays we encounter the particular challenge that these queries will likely

not hit the exact same region, but will differ more or less on the area to be accessed. Hence, it is

of advantage if the query engine can reuse also partially matching areas in arrays [31].

Generally, parallelization in Array Databases is not constrained to the rigid “Map() followed by Reduce()”

pattern of Hadoop-style systems, but can look at each query individually. This opens up more opportun-

ities, but is often nontrivial to implement. In Array Databases – as in database technology in general –

two main techniques are known for finding out how to best orchestrate an incoming query based on the

speedup methods available in the system:

 Query rewriting. This technique, which is long known in relational database query processing,

looks at an incoming query whether it can be rephrased into an equivalent one (i.e., returning

the same result), however, with less processing effort. To this end, the system knows a set of

rewrite rules like “left hand side expression returns same result as right hand side, but we know

right-hand side is faster”. Where do these rules come from? Actually, this is a nice example for

the usefulness of a formal semantics of a language; Relational and Array Algebra naturally lead

to algebraic equivalences which can be directly written into code. In the case of rasdaman, there

are about 150 such rules currently.

The following example (Fig. 6) illustrates the principle, with a rule saying “adding two images

pixelwise, and then computing the average value, is equivalent to first computing the averages

individually, and then add the result”. In the first case, array tiles have to be streamed three

times in the server whereas in the second case there are only two tile streams – the final

addition is over two scalars, hence negligible in cost. Bottom line, replacing an occurrence of the

left-hand side pattern by the right-hand side pattern saves 1/3 of the computing effort.

Fig. 6. Sample equivalence rule for array query rewriting: “avg(a+b) avg(a)+avg(b)”

 Array Databases Report

 - p. 16 -

 Cost-based optimization attempts to find an efficient execution plan out of the - usually large -

search space of possible plans for a given query. In contrast to query rewriting, this involves

knowledge (i.e.: estimation) of the costs of processing. Parameters influencing costs include the

number of tiles to be read from disk, location of tiles in case of a distributed system, the number

and complexity of operations, and several more.

Note that reformulating and compiling queries is not a time consuming task. Experience with rasdaman

shows that the optimization steps altogether take about a millisecond.

2.4 Client interfacing
While "datacubes" represent a convenient logical view on massive multi-dimensional data this does not

mean clients need to see data in such a shape. Very often, clients will do some extraction and

aggregation, thereby reducing and changing dimensionality away from the original. More importantly

even, users should be able to remain as much as possible within their comfort zone of well known tools -

for example, simple map navigation should still be able through clients like OpenLayers and Leaflet,

embedding into Web GIS should support tools like QGIS and ESRI ArcGIS, virtual globes like NASA

WebWorldWind and Cesium should be supported, whereas high-end analytics calls for access to

datacubes through R and python.

2.5 Related Technology
Array databases, by definition, are characterized by offering a declarative query language on n-D arrays.

Such technology can e implemented in various ways - as will be demonstrated by the systems overview

in the next section - each coming with its individual characteristics. However, we will also look beyond

the pure Array Database category and give a glance at other array technology, including

 array engines offering only procedural interfaces (rather than a query language), often

implemented in some scripting language (e.g., python), rather than running directly compiled

machine code (e.g., C++). Typically, these are constrained in functionality as users can only

invoke the functions provided, but cannot compose them to larger tasks – hence, they lack the

flexibility of databases.

 Command-line tools which form possible components of array services, but do not constitute a

complete service tool per se. Typically, these are useful for services inside a data center where

data experts at the same time are experienced full-stack developers.

 Libraries that provide array functionality, but do not constitute a server and do not have a query

concept (but rather a procedural API).

This way, we aim at providing a context for the novel category of Array Databases.

 Array Databases Report

 - p. 17 -

3 Open Data, Open Source, Open Standards
In the era where openness has become highly valued we sometimes observe confusion about the mean-

ing and consequence of an "open X". We, therefore, briefly discuss three core terms heavily debated in

the science data domain. Note that the goal is not to define or even explain in detail - this has been

done many times elsewhere already -, but to specifically relate these three terms to each other.

3.1 Open Data
This addresses accessibility of data. Data are said to be open if they can be accessed without any

restriction stemming from constrained user groups, etc. A related term is "Free Data" meaning that

access is free of cost.

An indirect obstacle to free access, aside and independently from organizational restrictions, can be the

difficulty of access due to reasons such as uncommon data formats, unwieldy data granules (such as 100

GB TIFF files), access interfaces requiring high technical backgrounds, or interfaces posing particular

hardware requirements (high client-side hardware resource needs, high-bandwidth connection, etc).

Hence, offering open data also has an implication on the ease of use of the data offered. In this context,

an interesting and widely embraced initiative has been launched by the USGS Landsat team coining the

term Analysis Ready Data. In this approach, data centers tentatively undertake high effort in preparing

(homogenizing, restructuring, cleansing, etc.) data in a way that reduces such intrinsic obstacles to data

access.

3.2 Open Source
This term refers to the software used, e.g., to serve or access data (i.e., servers and clients in Web-based

information systems). By way of background, most programs are written by human developers in som

ehigh-level language which is closer to human perception concepts than the computer's machine

language - hence, programming becomes more efficient, less error prone, and resulting programs are

better to maintain. For each language there are special programs - called compilers or interpreters -

translating this "souce code" into "object code" which can be executed by a particular CPU. Note that for

one and the same language different compilers may exist, and do so in practice - we will need this fact

later.

Obviously, the machine code is hard to understand for humans, as opposed to the high-level source

code which is digestible at least by programming experts. Hence, source code allows to find out what a

program really does - whether it does the right thing, does computations correctly and without flaws

like undue rounding errors, does not contain malicious code, etc. Of course, detecting any such issue

requires high effort by skilled programmers, so not everybody is able to benefit from the openness of

the source code.

Further, even open source code runs in the particular "environment" of the computer hosting the

service. As such, the program will use external libraries whose source code may or may not be open, and

it has been derived from the source code through a compiler which itself may or may not be open.

 Array Databases Report

 - p. 18 -

Hence, even when inspected by experts openness of the source code of the tool under consideration is

not necessarily a guarantee for completely overseeing its effects.

In particular, for data scientists (i.e., not computer scientists) it is generally not possible to verify the

validity of open source code - and be it just for the lack of time to inspect all source code involved.

Generally, speaking, both open source and proprietary software build and maintenance approaches

have their individual advantages and disadvantages. In today's planetary software ecosystem we find a

wide spectrum of business models, ranging from fully open source over mixed models (like dual license)

to fully closed, proprietary software (such as license sales or leases) - and often we find them in

combination (such as running open-source clients on closed-source MS-Windows).

3.3 Open Standards
In Information Technology, standards typically establish data formats and interfaces between software

components so that software artifacts written by different, independent producers (say, different comp-

anies or different departments within a company) still can communicate and perform a given task joint-

ly. Building software based on only interface knowledge and without knowledge about the internals of

how a component establishes the behaviour described by the interface definition is a key achievement

in Software Engineering; without such boxed thinking, the complexity of today's software would be ab-

solutely intractable and unmanageable.

Like with data, a standard is called open if it is accessible to everybody without discriminating; some of

those standards additionally are free of cost (such as with the Open Geospatial Consortium, OGC) while

others are available against a (usually moderate) fee (such as with ISO).

Some standardization bodies offer compliance suites which allows validating implementations against

the standard. One example is the extensive OGC compliance test suite.

Importantly, it is sufficient for some tool to know its interface specifications ("if I input X I will get Y"). If

this specification is an open standard, and if the tool has been confirmed to pass the corresponding

compliance test, then the behaiour of this tool can be trusted with respect to this standard (of course,

there may be further unwanted behaviour not addressed by the compliance test - for example, such a

test will typically concentrate on functionality, but not on security).

Examples are mainfold: we trust SQL query language implementation, regardless whether the database

management system is open or closed source; we trust our C++ compilers, python engines, numerical

libraries, operating systems, etc. - at least concerning the core question addressed here: does this code

provide me with the true, valid data (read from disk or processed)? And, for that matter, we trust the

underlying hardware which ultimately executes the code.

3.4 Conclusion
Concluding, open data and open source and open standards are three different concepts, each one

addressing separate concerns in the first place. Open data access is desirable from many aspects,

although there are valid reasons for some data to be not openly accessible. The service software in

 Array Databases Report

 - p. 19 -

particular plays an instrumental role in guaranteeing the promise of open data. Open source as such,

though, is not a guarantee (and not a required prerequisite) for open data - open standards serve a

much better role in this, although with the caveat that standards do not make a statement about the

complete client or server stack, but only about the particular aspect addressed by the standard. How-

ever, by using well-crafted standards (ideally coming with a solid mathematical underpinning), such as

the ISO SQL relational query language or the OGC WCPS geo datacube query language, a substantial

contribution towards the Holy Grail of open data can be made. The interoperability established thereby

- in this context: different servers using identical data will deliver identical results - constitutes a major

advantage whose benefits are by far not leveraged in full today.

 Array Databases Report

 - p. 20 -

4 Array Standards
Several standards relevant for large-scale array processing are already in place or under development.

Such standards may be both domain independent (such as ISO Array SQL) or domain specific (such as

the OGC WCPS geo raster query language). For each standard, its adoption status is provided.

4.1 Domain Neutral
 Array SQL (data and processing standard)

o Full title: ISO 9075 SQL Part 15: Multi-Dimensional Arrays (MDA)

o Issuing Body: ISO (SC 32 / WG 3)

o Description: SQL extension with domain-neutral definition and queries on massive

multi-dimensional arrays ("datacubes").

o Adoption Status: DIS ballot started in August 2017

o Further information:

 D. Misev, P. Baumann: Homogenizing Data and Metadata Retrieval in Scientific

Applications. Proc. ACM CIKM DOLAP, Melbourne, Australia, October 23, 2015,

pp. 25 - 34

4.2 Earth & Planetary Sciences
 OGC Coverages (geo datacube data standard)

o Full title: Coverage Implementation Schema (CIS) [formerly also known as: GMLCOV]

o Issuing Body: Open Geospatial Consortium (OGC)

o Description: service-independent data model for spatio-temporal regular and irregular

grids, point clouds, and general meshes. As opposed to ISO 19123 (see below), this is

concrete enough to be interoperable and conformance testable down to pixel level.

o Adoption Status:

 adopted by OGC

 under adoption by ISO as DIS 19123-2

 adopted by EU INSPIRE, with slight modifications (re-harmonization with OGC

coverage standard under work)

o Further information:

 authoritative standards page: http://www.opengeospatial.org/standards/wcs

 tutorials and webinars: http://earthserver.eu/webinars

 P. Baumann, E. Hirschorn, J. Maso, A. Dumitru, V. Merticariu: Taming Twisted

Cubes. Proc. ACM SIGMOD Workshop on Managing and Mining Enriched Geo-

Spatial Data (GeoRich), San Francisco, USA, June 26 - July 01, 2016

 P. Baumann: Beyond Rasters: Introducing The New OGC Web Coverage Service

2.0. Proc. ACM SIGSPATIAL GIS, San Jose, USA, November 2-5, 2010

 ISO Coverages (geo datacube data standard)

o Full title: OGC Abstract Topic 6 (identical to ISO 19123)

o Issuing Body: ISO (TC211)

http://www.iso.org/
http://dl.acm.org/citation.cfm?id=2811223&CFID=723484915&CFTOKEN=42259962
http://dl.acm.org/citation.cfm?id=2811223&CFID=723484915&CFTOKEN=42259962
http://www.opengeospatial.org/resource/products/byspec/?specid=640
http://www.opengeospatial.org/standards/wcs
http://earthserver.eu/webinars
http://acmgis2010.cs.ucsb.edu/

 Array Databases Report

 - p. 21 -

o Description: abstract, generic data model for spatio-temporal coverages. This forms the

conceptual basis for the Coverage Implementation Schema (CIS) under adoption by ISO

(See above).

o Adoption Status:

 adopted since 2004 as 19123, under revision by ISO to become 19123-1

o Further information:

 None currently

 OGC WCS (geo datacube access and processing standard)

o Full title: Web Coverage Service

o Issuing Body: Open Geospatial Consortium (OGC)

o Description: modular Web service for accessing spatio-temporal regular and irregular

grids, point clouds, and general meshes

o Adoption Status:

o adopted OGC standard since 2012

 adopted by EU INSPIRE in December 2016

 planned for adoption by ISO

o Further information:

 authoritative standards page: http://www.opengeospatial.org/standards/wcs

 tutorials and webinars: http://earthserver.eu/webinars

 P. Baumann: Beyond Rasters: Introducing The New OGC Web Coverage Service

2.0. Proc. ACM SIGSPATIAL GIS, San Jose, USA, November 2-5, 2010

 OGC WCPS (processing standard)

o Full title: Web Coverage Processing Service

o Issuing Body: Open Geospatial Consortium (OGC)

o Description: geo raster query language for massive spatio-temporal datacubes over

regular or irregular grids

o Adoption Status:

 adopted OGC standard since 2009

 optional part in INSPIRE Coverage Download Services

o Further information:

 authoritative standards page: http://www.opengeospatial.org/standards/wcps

 tutorials and webinars: http://earthserver.eu/webinars

 P. Baumann: The OGC Web Coverage Processing Service (WCPS) Standard.

Geoinformatica, 14(4)2010, pp 447-479

http://www.opengeospatial.org/resource/products/byspec/?specid=640
http://inspire.ec.europa.eu/id/document/tg/download-wcs
http://www.opengeospatial.org/standards/wcs
http://earthserver.eu/webinars
http://acmgis2010.cs.ucsb.edu/
http://inspire.ec.europa.eu/id/document/tg/download-wcs
http://www.opengeospatial.org/standards/wcps
http://earthserver.eu/webinars
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10707-009-0087-2

 Array Databases Report

 - p. 22 -

5 Array Technology
This page collects technology for handling massive multi-dimensional arrays. While emphasis is on Array

Databases, other technologies addressing arrays are mentioned as well as long as substantial array

support can be evidenced. Please observe Etiquette (see bottom).

Array databases naturally can do the "heavy lifting" in multi-dimensional access and processing, but

arrays in practice never come alone; rather, they are ornamented with application-specific metadata

that are critical for understanding of the array data and for querying them appropriately. For example, in

geo datacubes querying is done typically on geographical coordinates, such as latitude and longitude;

the system needs to be able to translate queries in geo coordinates into the native Cartesian index co-

ordinates o arrays. In all applications using timeseries, users will want to utilize date formats - such as

ISO 8601 supporting syntax like "2018-02-20" - rather than index counting. For cell types, it is not suffic-

ient to just know about integer versus floating-point numbers, but it is important to know about units of

measure, null values (note that sensor data do not just deliver one null value, such as traditional data-

base support, but multiple null values with individual semantics).

Coupling array queries with metadata query capabilities, therefore, is of high practical importance; ISO

SQL/MDA, with its integration of arrays into the rich existing framework of the SQL language, shows one

possible way. If that appears too complex to implement, silo solutions with datacube support are estab-

lished. Specifically in the Earth science domain an explosion of domain-specific "datacube" solutions can

be observed recently (see, e.g., the EGU 2018 datacube session), usually implemented in python using

existing array libraries. We, therefore, also look at domain-specific "datacube" tools as well.

This state of the art review on array service implementations is organised as follows. First, Array Data-

bases are inspected which offer generic query and architectural support for n-D arrays. Next, known

object-relational emulations of arrays are listed. MapReduce-type systems follow as a substantially diff-

erent category of data systems, which however often is mentioned in the context of Bi Data. After that,

systems are listed which do not fall into any of the above categoris. Finally, we list libraries (as opposed

to the aforementioned complete engines) and n-D array data formats.

5.1 Array Database Systems and Related Technologies

5.1.1 Systematics

This section inspects Array Database and related technology. As recently a significant boom in array

systems can be observed that an increasing number of technologies is being announced, at highly vary-

ing stages of maturity. Thanks to the blooming research and development it can be expected that furth-

er systems emerge soon which have not found their way into this report. The landscape of systems en-

countered has been grouped into the following categories (see also Section 2.5):

 Array Database systems characterized by a query language, multi-user operation, storage

management, and access control mechanisms. These can be subdivided into

o Full-stack Array Databases which are implemented from scratch (ex: rasdaman, SciDB)

https://meetingorganizer.copernicus.org/EGU2018/posters/28035

 Array Databases Report

 - p. 23 -

o Add-ons to existing database systems which are implemented as extra layers to existing

DBMSs (ex: EXTASCID), as object-relational extensions (ex: PostGIS Raster, Teradata

Arrays, OracleGeoRaster), or through direct DBMS kernel coding (ex: SciQL).

 Array tools encompassing command-line oriented and libraries that provide array functionality,

but do not constitute a server; the central distinguishing criteria are that (i) they do not offer a

query concept, but rather a procedural API (where each call can accomplish just one piece of

functionality, as opposed to arbitrarily complex user queries in databases), and (ii) they do not

accept queries via Internet, but rather require being logged in on the server machine for execut-

ing shell commands (ex: Ophidia) or writing own embedding code in some scripting language

like python (ex: Wendelin.core, xarray, TensorFlow) or a compiled language like C++ (ex: boost::

geometry, xtensor). Such approaches appear useful inside a data center where data experts at

the same time are experienced full-stack developers, as opposed to data scientists who gener-

ally prefer high-level languages like R.

As such, these tools and libraries form possible components of array services, but do not con-

stitute a complete service tool per se.

 MapReduce type array engines allowing multi-dimensional array processing based on top of

Hadoop or Spark.

5.1.1 Array DBMSs - Full-Stack

In this category we find database systems with the characteristic service features – a query language,

multi-user operation, etc.

5.1.1.1 rasdaman ("raster data manager")

Description: Rasdaman has pioneered the field of Array Databases, with publications since 1992. This

array engine allows declarative querying of massive multi-dimensional arrays, including distributed array

joins. Server-side processing relies on effective optimization, parallelization, and use of heterogeneous

hardware for retrieval, extraction, aggregation, and fusion on distributed arrays. The architecture re-

sembles a parallelizing peer federation without a single point of failure. Arrays can be stored in the opt-

imized rasdaman array store or in standard databases; further, rasdaman can operate directly on any

pre-existing archive structure. Single rasdaman databases exceed a PB [3], and queries have been split

successfully across more than 1,000 cloud nodes [21]. The rasdaman technology has coined the research

field of Array Databases [10]and is blueprint for several Big Data standards, such as the ISO SQL/MDA

(Multi-Dimensional Arrays) candidate standard [34] and the OGC Web Coverage Service (WCS) "Big Geo

Data" suite with its geo datacube query language, Web Coverage Processing Service (WCPS) [13].

Source code: www.rasdaman.org/Download for the open-source rasdaman community edition (LGPL for

client libraries, GPL for server – so can be embedded in commercial applications); for the proprietary

rasdaman enterprise edition see www.rasdaman.com.

Public demo site and further information:

 http://standards.rasdaman.com

Publications (excerpt only - see full list):

http://www.rasdaman.org/Download
http://www.rasdaman.com/
http://standards.rasdaman.com/
http://www.faculty.jacobs-university.de/pbaumann/iu-bremen.de_pbaumann/pubs.php

 Array Databases Report

 - p. 24 -

 ISO FDIS 9075 SQL Part 15: Multi-Dimensional Arrays

 P. Baumann: Array Databases and Raster Data Management. In: T. Özsu, L. Liu (eds.): Encyclo-

pedia of Database Systems, Springer, 2017

 D. Misev, P. Baumann: The Open-Source rasdaman Array DBMS. VLDB Big Data Open Source

Systems (BOSS) Workshop, New Delhi, India, September 09, 2016

 P. Baumann, V. Merticariu: On the Efficient Evaluation of Array Joins. Proc. IEEE Big Data Work-

shop Big Data in the Geo Sciences, Santa Clara, US, October 29, 2015

 P. Baumann: On the Management of Multidimensional Discrete Data. VLDB Journal 4(3)1994,

Special Issue on Spatial Database Systems, pp. 401 - 444

 P. Baumann: A Database Array Algebra for Spatio-Temporal Data and Beyond. Proc. Intl. Work-

shop on Next Generation Information Technologies and Systems (NGITS '99), July 5-7, 1999,

Zikhron Yaakov, Israel, Springer LNCS 1649

 Peter Baumann: Language Support for Raster Image Manipulation in Databases. Proc. Int.

Workshop on Graphics Modeling, Visualization in Science & Technology, Darmstadt/Germany,

April 13 - 14, 1992

5.1.1.2 SciDB

Description: SciDB is an Array DBMS following the tradition of rasdaman. SciDB employs its own query

interface offering two languages, AQL (Array Query Language) and AFL (Array Functional Language). Its

architecture is based on a modified Postgres kernel in the center plus UDFs (User-Defined Functions)

implementing array functionality, and also effecting parallelization.

Website: https://www.paradigm4.com/

Source code: https://drive.google.com/drive/folders/0BzNaZtoQsmy2aGNoaV9Kdk5YZEE (last version of

source code; more recent SciDB versions – current at the time of this writing is 18.1 – do not publish the

source code any longer)

(dual license model, see details; community version is Affero: not allowed for commercial purposes)

5.1.1.3 SciQL

Description: SciQL was a case study extending the column-store DBMS MonetDB with array-specific op-

erators. As such, n-D arrays were sequentialized internally to column-store tables (i.e., there is no dedic-

ated storage and processing engine).

Website: https://projects.cwi.nl/scilens/content/platform.html

Source code: (could not find it - not with MonetDB)

5.1.1.4 EXTASCID

Description: EXTASCID is a complete and extensible system for scientific data processing. It supports

natively both arrays as well as relational data. Complex processing is handled by a metaoperator that

can execute any user code. EXTASCID is built around the massively parallel GLADE architecture for data

aggregation. While it inherits the extensibility provided by the original GLA interface implemented in

https://www.paradigm4.com/
https://drive.google.com/drive/folders/0BzNaZtoQsmy2aGNoaV9Kdk5YZEE
https://www.paradigm4.com/about/licensing/
https://projects.cwi.nl/scilens/content/platform.html

 Array Databases Report

 - p. 25 -

GLADE, EXTASCID enhances this interface considerably with functions specific to scientific processing.

(source).

Website: http://faculty.ucmerced.edu/frusu/Projects/GLADE/extascid.html

Source code: (could not find it – likely not publicly available)

5.1.2 Array DBMSs – Object-Relational Extensions

Object-relational capabilities in relational DBMSs allow users (usually: administrators) to define new

data types as well as new operators. Such data types can be used for column definitions, and the corr-

esponding operators can be used in queries. While this approach has been implemented by several

systems (see below) it encounters two main shortcomings:

 An array is not a data type, but a data type constructor (sometimes called "template"). An

instructive example is a stack: likewise, it is not a data type but a template which needs to be

instantiated with some element data type to form a concrete data type itself - for example, by

instantiating Stack<T> with String - often denoted as Stack<String> - one particular

data type is obtained; Stack <Integer> would be another one. An array template is para-

metrized with an n-dimensional extent as well as some cell ("pixe", "voxel") data type; following

the previously introduced syntax this might be written as Array<Extent,CellType>.

Hence, object-relational systems cannot provide the array abstraction as such, but only

instantiated data types like

Array<[0:1023,0:767],int>

or

Array <[0:1023,0:767],struct{int red, green, blue;}>.

Further, as the SQL syntax as such cannot be extended such array support needs to introduce

some separate array expression language. Generic array types like the rasdaman n-D array

constructor become difficult at best. Further, this approach typically implies particular imple-

mentation restrictions.

 Due to the genericity of such object-relational mechanisms there is no dedicated internal

support for storage management (in particular: for efficient spatial clustering, but also for array

sizes), indexing, and query optimization.

Still, some systems have implemented array support in an object-relational manner as it is substantially

less implementation effort than implementing the full stack of an Array DBMS, with each component

crafted specifically for arrays.

5.1.2.1 PostGIS Raster

Description: "Raster" is a PostGIS type for storing and analyzing geo raster data. Like PostGIS in general,

it is implemented using the extension capabilities of the PostgreSQL object-relational DBMS. Internally,

raster processing relies heavily on GDAL. Currently, PostGIS Raster supports x/y 2D and, for x/y/spectral,

3D rasters. It allows raster expressions, however, not integrated with the PostgreSQL query language

but passed to a raster object as strings written in a separate Map Algebra language. Large objects have

to be partitioned by the user and distributed over tuples in a table's raster column; queries have to be

http://faculty.ucmerced.edu/frusu/Projects/GLADE/extascid.html
http://faculty.ucmerced.edu/frusu/Projects/GLADE/extascid.html

 Array Databases Report

 - p. 26 -

written in a way that they achieve a proper recombination of larger rasters from the partitions stored in

one tuple each. A recommended partition size is 100x100 pixels.

Website: http://postgis.net/docs/manual-2.1/RT_reference.html

Source code: https://trac.osgeo.org/postgis/wiki/DevWikiMain

5.1.2.2 Oracle GeoRaster

Description: GeoRaster is a feature of Oracle Spatial that lets you store, index, query, analyze, and

deliver raster image and gridded data and its associated metadata. GeoRaster provides Oracle spatial

data types and an object-relational schema. You can use these data types and schema objects to store

multidimensional grid layers and digital images that can be referenced to positions on the Earth's

surface or in a local coordinate system. If the data is georeferenced, you can find the location on Earth

for a cell in an image; or given a location on Earth, you can find the cell in an image associated with that

location. There is no particular raster query language underneath, nor a specific array-centric

architecture.

Website: http://docs.oracle.com/cd/B19306_01/appdev.102/b14254/geor_intro.htm

Source code: n.a. (closed source, proprietary)

5.1.2.3 Teradata Arrays

Description: Teradata recently has added arrays as a datatype, also following an object-relational

approach. There are some fundamental operations such as subsetting; however, overall the operator do

not resemble the expressive power of genuine Array DBMSs. Further, arrays are mapped to 64 kB blobs

so that the overall size of a single array (considering the array metadata stored in each blob) seems to

be around 40 kB. Further, there are severe restrictions: You can update only one element of the array at

a time; it us unclear whether array joins are supported.

Website: https://developer.teradata.com/database/reference/array-data-type-scenario,

http://info.teradata.com/htmlpubs/DB_TTU_16_00/index.html#page/SQL_Reference%2FB035-1145-

160K%2Fxbk1472240940805.html%23

Source code: n.a. (closed source, proprietary)

5.1.3 Array Tools

5.1.3.1 OPeNDAP

Description: OPeNDAP ("Open-source Project for a Network Data Access Protocol") is a data transport

architecture and protocol for earth scientists. OPeNDAP includes standards for encapsulating structured

data, annotating the data with attributes and adding semantics that describe the data. An OPeNDAP

client sends requests to an OPeNDAP server, and receives various types of documents or binary data as

a response. (Wikipedia)

An array is one-dimensional; multidimensional Arrays are defined as arrays of arrays. An array’s memb-

er variable MAY be of any DAP data type. Array indexes MUST start at zero. A constraint expression pro-

http://postgis.net/docs/manual-2.1/RT_reference.html
https://trac.osgeo.org/postgis/wiki/DevWikiMain
http://docs.oracle.com/cd/B19306_01/appdev.102/b14254/geor_intro.htm
https://developer.teradata.com/database/reference/array-data-type-scenario
http://info.teradata.com/htmlpubs/DB_TTU_16_00/index.html#page/SQL_Reference%2FB035-1145-160K%2Fxbk1472240940805.html%23
http://info.teradata.com/htmlpubs/DB_TTU_16_00/index.html#page/SQL_Reference%2FB035-1145-160K%2Fxbk1472240940805.html%23
https://en.wikipedia.org/wiki/OPeNDAP

 Array Databases Report

 - p. 27 -

vides a way for DAP client programs to request certain variables, or parts of certain variables, from a

data source. A constraint expression may also use functions executed by the server. See this source for

details.

Website: http://www.opendap.org/

Source code: http://www.opendap.org/software/hyrax-data-server (Hyrax)

5.1.3.2 xarray

Description: xarray (formerly xray) is an open source project and Python package that aims to bring the

labeled data power of pandas to the physical sciences, by providing N-dimensional variants of the core

pandas data structures.Goal is to provide a pandas-like and pandas-compatible toolkit for analytics on

multi-dimensional arrays, rather than the tabular data for which pandas excels. The approach adopts the

Common Data Model for self- describing scientific data in widespread use in the Earth sciences:

xarray.Dataset is an in-memory representation of a netCDF file. [source: xarray.pydata.org/en/stable/]

Website: http://xarray.pydata.org

Source code: http://xarray.pydata.org/en/stable/installing.html#instructions

5.1.3.3 TensorFlow

Description: TensorFlow is a tool for machine learning. While it contains a wide range of functionality,

TensorFlow is mainly designed for deep neural network models.

Website: https://www.tensorflow.org/

Source code: https://www.tensorflow.org/install/

5.1.3.4 wendelin.core

Description: Wendelin.core allows you to work with arrays bigger than RAM and local disk. Bigarrays are

persisted to storage, and can be changed in transactional manner. In other words bigarrays are some-

thing like numpy.memmap for numpy.ndarray and OS files, but support transactions and files bigger

than disk. The whole bigarray cannot generally be used as a drop-in replacement for numpy arrays, but

bigarray slices are real ndarrays and can be used everywhere ndarray can be used, including in C /

python / Fortran code. Slice size is limited by virtual address-space size, which is about max 127TB on

Linux / amd64. (source)

Website: https://lab.nexedi.com/nexedi/wendelin.core

Source code: https://lab.nexedi.com/nexedi/wendelin.core

5.1.3.5 Google Earth Engine

Description: Google Earth Engine builds on the tradition of Grid systems with files, there is no datacube

paradigm. Based on a functional programming language, users can submit code which is executed trans-

parently in Google’s own distributed environment, with a worldwide private network. Parallelization is

straightforward. After discussion of the developers with the rasdaman team, Google has added a declar-

http://www.opendap.org/pdf/ESE-RFC-004v1.2.pdf
http://www.opendap.org/
http://www.opendap.org/software/hyrax-data-server
http://pandas.pydata.org/
http://www.unidata.ucar.edu/software/thredds/current/netcdf-java/CDM
http://xarray.pydata.org/en/stable/
http://xarray.pydata.org/
http://xarray.pydata.org/en/stable/installing.html#instructions
https://www.tensorflow.org/
https://www.tensorflow.org/install/
http://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html
https://lab.nexedi.com/nexedi/wendelin.core
https://lab.nexedi.com/nexedi/wendelin.core
https://lab.nexedi.com/nexedi/wendelin.core

 Array Databases Report

 - p. 28 -

ative “Map Algebra” interface in addition which resembles a subset of the rasdaman query language. In

a face-to-face conversation at the "Big Data from Space" conference 2016, the EarthEngine Chief Archit-

ect explained that EarthEngine is relying on Google’s massive hardware rather than on algorithmic elab-

oration. At the heart is a functional programming language which does not offer model-based array

primitives like rasdaman, nor comparable optimization.

Website: https://earthengine.google.com/

Source code: n.a., closed-source, proprietary system

5.1.3.6 OpenDataDatacube

Description: The Open Data Cube (ODC) initiative seeks to increase the value and impact of global Earth

observation satellite data by providing an open and freely accessible exploitation architecture. (source).

A python API specification can be found at http://datacube-core.readthedocs.io/en/stable/dev/api.html,

a Web interface specification could not be found.

Website: https://www.opendatacube.org/

Source code: https://github.com/ceos-seo/data_cube_ui/blob/master/docs/datacube_install.md

5.1.3.7 xtensor

Description: xtensor is a C++ library meant for numerical analysis with multi-dimensional array express-

ions. xtensor provides an extensible expression system enabling lazy broadcasting, an API following the

idioms of the C++ standard library, and tools to manipulate array expressions and build upon xtensor.

Containers of xtensor are inspired by NumPy, the Python array programming library. Adaptors for exist-

ing data structures to be plugged into our expression system can easily be written. In fact, xtensor can

be used to process numpy data structures inplace using Python’s buffer protocol. For more details on

the numpy bindings, check out the xtensor-python project. (source)

Website: http://quantstack.net/xtensor

Source code: https://github.com/QuantStack/xtensor

5.1.3.8 boost::geometry

Description: Boost.Geometry (aka Generic Geometry Library, GGL), part of collection of the Boost C++

Libraries, defines concepts, primitives and algorithms for solving geometry problems. Boost.MultiArray

provides a generic N-dimensional array concept definition and common implementations of that

interface.

Website: http://www.boost.org/doc/libs/1_66_0/libs/multi_array/doc/index.html

Source code: https://github.com/boostorg/boost

5.1.3.9 Ophidia

Description: The Ophidia framework provides a full software stack for data analytics and management

of big scientific datasets exploiting a hierarchically distributed storage along with parallel, in-memory

https://earthengine.google.com/
https://www.opendatacube.org/
http://datacube-core.readthedocs.io/en/stable/dev/api.html
https://www.opendatacube.org/
https://github.com/ceos-seo/data_cube_ui/blob/master/docs/datacube_install.md
http://www.numpy.org/
https://docs.python.org/3/c-api/buffer.html
https://github.com/QuantStack/xtensor-python
http://quantstack.net/xtensor
http://quantstack.net/xtensor
https://github.com/QuantStack/xtensor
http://www.boost.org/doc/libs/1_66_0/libs/multi_array/doc/index.html
https://github.com/boostorg/boost

 Array Databases Report

 - p. 29 -

computation techniques and a server-side approach. The Ophidia data model implements the data cube

abstraction to support the processing of multi-dimensional (array-based) data. A wide set of operators

provides functionalities to run data analytics and metadata management: e.g. data sub-setting, reduct-

ion, statistical analysis, mathematical computations, and much more. So far about 50 operators are pro-

vided in the current release, jointly with about 100 primitives covering a large set of array-based funct-

ions. The framework provides support for executing workflows with various sizes and complexities, and

an end-user terminal, i.e.: command-line interface. A programmatic Python interface is also available for

developers.

Website: http://ophidia.cmcc.it/

Source code: https://github.com/OphidiaBigData (GPLv3)

5.1.3.10 TileDB

Description: The TileDB library manages data that can be represented as dense or sparse arrays. It can

support any number of dimensions and store in each array element any number of attributes of various

data types. It offers compression, high IO performance on multiple data persistence backends, and easy

integration with ecosystems used by today’s data scientists.

Website: https://tiledb.io/

Source code: https://github.com/TileDB-Inc/

5.1.4 MapReduce-Type Systems

5.1.4.1 Overview

MapReduce offers a general parallel programming paradigm which is based on two user-implemented

functions, Map() and Reduce(). While Map() performs filtering and sorting, Reduce() acts as an aggreg-

ator. Both functions are instantiated multiple time for massive parallelization; the MapReduce engine

manages the process instances as well as their communication.

Implementations of the MapReduce paradigm - such as Hadoop, Spark, and Flink - typically use Java or

Scala for the Map() and Reduce() coding. While these languages offer array primitives for processing

multi-dimensional arrays locally within a Map() and Reduce() incarnation here is no particular support

for arrays exceeding local server main memory; in particular, the MapReduce engines are not aware of

the spatial n-dimensional proximity of array partitions. Hence, the common MapReduce optimizations

cannot exploit the array semantics. Essentially, MapReduce is particularly well suited for unstructured

data like sets: "Since it was not originally designed to leverage the structure its performance is

suboptimal" [1].

That said attempts have been made to implement partitioned array management and processing on top

of MapReduce. Below some major approaches are listed.

http://ophidia.cmcc.it/
https://github.com/OphidiaBigData
https://tiledb.io/
https://github.com/TileDB-Inc/

 Array Databases Report

 - p. 30 -

5.1.4.2 SciHadoop

Description: SciHadoop is a Hadoop plugin allowing scientists to specify logical queries over array-based

data models. SciHadoop executes queries as map/reduce programs defined over the logical data model.

A SciHadoop prototype has been implemented for NetCDF data sets.

Website: DAMASC research group.

Source code: https://github.com/four2five/SciHadoop

5.1.4.3 SciSpark

Description: SciSpark is a NASA's Advance Information Systems Technology (AIST) program funded

project that seeks to provide a scalable system for interactive model evaluation and for the rapid

development of climate metrics and analysis to address the pain points in the current model evaluation

process. SciSpark directly leverages the Apache Spark technology and its notion of Resilient Distributed

Datasets (RDDs). SciSpark is implemented in a Java and Scala Spark environment.

Website: https://scispark.jpl.nasa.gov/

Source code: https://github.com/SciSpark

5.1.4.4 GeoTrellis

Description: GeoTrellis is a geographic data processing engine for high performance applications. Geo-

Trellis provides data types for working with rasters in the Scala language, as well as fast reading and

writing of these data types to disk.

Website: http://geotrellis.io/

Source code: https://github.com/geotrellis

5.1.4.5 MrGeo

Description: MrGeo (pronounced "Mister Geo") is an open source geospatial toolkit designed to provide

raster-based geospatial processing capabilities performed at scale. MrGeo enables global geospatial big

data image processing and analytics. MrGeo is built upon the Apache Spark distributed processing

framework.

Website: https://github.com/ngageoint/mrgeo/wiki

Source code: https://github.com/ngageoint/mrgeo

https://systems.soe.ucsc.edu/projects/damasc#proj1
https://github.com/four2five/SciHadoop
https://scispark.jpl.nasa.gov/
https://github.com/SciSpark
http://geotrellis.io/
https://github.com/geotrellis
https://github.com/ngageoint/mrgeo/wiki
https://github.com/ngageoint/mrgeo

 Array Databases Report

 - p. 31 -

6 Publicly Accessible Array Services
Below, a selection of publicly accessible services (in RDA terminology: adopters) is listed which use Array

Database technology. To be noted is the variability of the portal frontends and clients used, all uniformly

mapping to Array Database technology underneath.

Fig. 7. Impressions of various services powered by an Aray Database system
(source: rasdaman / EarthServer).

 standards.rasdaman.com (rasdaman): sample geo-oriented array use cases on 1-D through 5-D

data sets. Purpose of this service is to illustrate practical use of the OGC Big Geo Datacube

standards, WCS and WCPS.

 ESA Earth Observation Data Service (rasdaman): this ESA service, maintained by MEEO, currently

(beginning 2018) is offering in excess of 2.5 Petabyte of Atmosphere, Land and Ocean EO pro-

ducts coming from the Sentinel family. A private cloud infrastructure is being set up to imple-

ment advanced access processing services on Big Data.

 ECMWF Climate Science Data Service (rasdaman): The experimental service provides access to

ERA-interim reanalysis datathrough the OGC standard data access protocols WCS and WCPS. A

connection to ECMWF's Meteorological Archival and Retrieval System (MARS) has been

demonstrated.

 Marine Science Data Service (rasdaman): this service, offered by Plymouth Marine Laboratory

(PML, UK) provides access and processing on satellite imagery for ocean colour analysis. Current

offering is 70+ TB.

 PlanetServer (rasdaman): Planetary Data Service, hosted by Jacobs University, is offering

geology data currently for Mars, Moon, and Vesta. Total data size is 20+ TB, based on OGC WCS

and WCPS standard based interfaces.

http://standards.rasdaman.com/
https://eodataservice.org/
http://earthserver.ecmwf.int/
http://earthserver.pml.ac.uk/
http://planetserver.github.io/

 Array Databases Report

 - p. 32 -

 CODE-DE is the German Sentinel hub providing data collected by the ESA Sentinel Earth Observ-

ation satellite family. The batch-oriented Hadoop-based service of CODE-DE is currently being

enhanced with interactive spatio-temporal datacube analytics using rasdaman.

 National Computational Infrastructure (NCI) Australia has an experimental service on Landsat8

data covering Australia, running rasdaman.

https://code-de.org/
http://rasdaman.nci.org.au/rasdaman/ows

 Array Databases Report

 - p. 33 -

7 Array Systems Assessment

7.1 Systematics
We look at the systems from the perspectives

 Functionality: What functionality does the system offer? Are there any known restrictions?

 Architecture: This mainly addresses the architectural paradigms used. As such, this is not a

quality criterion, but provided as background information.

 Performance: How fast and scalable is the tool in comparison?

This section relies on [33] and other work undertaken in this context.

Each of the criteria applied is explained first; after that, a feature matrix is presented summarizing all

facts synoptically. In addition, literature is cited where the information has been harvested from. This

allows recapitulating the matrix. Notably, several systems today are capable of integrating external code

(e.g., SciDB, rasdaman). Therefore, it is indispensable for each functionality feature to clearly state if it is

an integral part implemented in the core engine or not.

Some systems mentioned could not be considered due to resource limitations, but they are considered

sufficiently similar to the ones inspected below. Examples include MrGeo and GeoTrellis as specialized

Hadoop implementations offering array support.

7.2 Functional Comparison

7.2.1 Criteria

This is functionality the user (i.e., query writer) has available in terms of the data and service model. In

this spirit, we also list export/import interfaces as well as known client interfaces although they do not

belong to the logical level in a classic sense. Parameters investigated are the following:

Data model expressiveness:

 number of dimensions: what number of dimensions can an array have? Today, 3-D x/y/t image

timeseries and x/y/z voxel cubes are prominent, but also 4-D x/y/z/t gas and fluid simulations,

such as atmospheric weather predictions. However, other dimensions occur as well: 1-D and 2-D

data appear not only standalone (as sensor and image data, resp.), but also as extraction results

from any-dimensional datacubes (such as a pixel's history or image time slices). Also, higher

dimensions occur regularly. Climate modellers like to think in 5-D cubes (with a second time

axis), and statistical datacubes can have a dozen dimensions. Any array engine should offer

support for this spectrum of dimensions.

 extensibility of extent along dimensions: can an existing array be extended along each

dimension's lower and upper bound? Imagine a map has been defined for a country, and now is

to be extended to cover the whole continent. This means: every axis must be extensible, and it

must be so on both its lower and upper bounds.

 Array Databases Report

 - p. 34 -

 cell data types: support for numeric data types, for composite cells (e.g., red/green/blue pixels),

etc. While radar imagery consists of single values (complex numbers), satellite images may have

dozens or even hundreds of "bands". Climate modelers consider 50 and more "variables" for

each location in the atmosphere, indicating measures like temperature, humidity, wind speed,

trace gases, etc.

 null values: is there support for null values? For single null values vs several null values? Proper

treatment of null values in operations? Null values are well known in databases, and scientific

data definitely require them, too. However, instrument observations typically know of more

than one null value (such as "value unknown", "value out of range", "no value delivered", etc.),

and these meanings typically are piggybacked on some value from the data type (such as -9999

for "unkown depth"). Such null values should be considered by array databases, too. Operations

must treat null values appropriately so that they don't falsify results.

 data integration: can queries integrate array handling with data represented in another model,

such as: Relational tables? XML stores? RDF stores? Other? This is important, eg, for data/meta-

data integration - arrays never come standalone, but are ornamented with metadata critically

contributing to their semantics. Such metadata typically reside already under ordered data

management (much more so than the arrays themselves, traditionally) frequently utilizing some

well-known data model.

 General-purpose or domain specific? Array databases per se are domain independent and,

hence, can be used for all application domains where arrays occur. However, some systems

have been crafted with a particular domain in mind, such as geo data cubes, and consequently

may be less applicable to other domains, such as medical imagery.

Processing model expressiveness:

 query language expressiveness (built-in): This section investigates functionality which is readly

available through the primary query language and directly supported by the system (i.e., not

through extension mechanisms).

o formal semantics: is there a mathematical semantics definition underlying data and

query model? While this may seem an academic exercise a formal semantics is indisp-

ensable to verify that the slate of functionality provided is sufficiently complete (for a

particular requirements set), consistent, and without gaps. Practically speaking, a well-

defined semantics enables safe machine-to-machine communication, such as automatic

query generation without human interference.

o declarative: does the system offer a high-level, declarative query language? Low-level

procedural languages (such as C, C++, Java, python, etc.) have several distinct disadvant-

ages: (i) They force users to write down concrete algorithms rather than just describing

the intended result; (ii) the server is constrained in the potential of optimising queries;

(iii) delarative code can be analyzed by the server, e.g., to estimate costs and, based on

this, enforce quota; (iv) a server accepting arbitrary procedural code has a substantial

security hole. SQL still is the role model for declarative languages.

 Array Databases Report

 - p. 35 -

o optimizable: can queries be optimized in the server to achieve performance improve-

ments? What techniques are available? Procedural code typically is hard to optimize on

server side, except for "embarrassingly parallel" operations, i.e., operations where par-

allelization is straightforward. Declarative languages usually open up vistas for more

complex optimizations, such as query rewriting, query splitting, etc. (See also discussion

later on system architectures.)

o subsetting (trim, slice) operations: can arrays be subset along all dimensions in one

request? Extraction of sub-arrays is the most fundamental operation on arrays. Trimm-

ing means reducing the extent by indicating new lower and upper bounds (which both

lie inside the array under inspection) whereas slicing means extracting a slab at a part-

icular position on an axis. Hence, trimming keeps the number of dimensions in the out-

put while slicing reduces it; for example, a trim in x and y plus a slice in t would extract,

from a 4-D x/y/z/t datacube, a 3-D x/y/z timeslice. Systems must support server-side

trimming and slicing on any number of dimensions simultaneously to avoid transporting

excessive amounts of data.

o common operations: can all (unary and binary) operations which are available on the

cells type known to the system also be applied element-wise to arrays? Example: a+b is

defined in numbers, so A+B should be possible on arrays.

o array construction: can new arrays be created in the databases (as opposed to creating

arrays only from importing files)? For example, a histogram is a 1-D array derived from

some other array(s).

o aggregation operations: can aggregates be derived from an array, supporting common

operations like sum, average, min, max? Can an aggregation query deliver scalars, or

aggregated arrays, or both? Note that aggregation does not always deliver just a single

number - aggregation may well just involve selected axes, hence return a (lower-

dimensional) array as a result.

o array joins: can two or more arrays be combined into a result array? Can they have diff-

erent dimensions, extents, cell types? While such functionality is indispensable (think of

overlaying two map images) it is nontrivial to implement (think of diverging partitioning

array schemes), hence not supported by all systems.

o Tomlin's Map Algebra support: are local, focal, zonal, global operations [43] expressible

in queries. Essentially, this allows to have arithmetic expressions as array indexes, such

as in "a[x+1] - a[x-1]". Image filtering and convolution is maybe the most prominent app-

lication of such addressing, but there are many important operations requiring sophist-

icated array cell access – even matrix multiplication is not trivial in this sense.

 external function invocation: can external code (also called UDF, User-Defined Functions) be

linked into the server at runtime so that this code can be invoked from within the query lang-

uage? Commonly, array query languages are restricted in their expressiveness to remain "safe in

evaluation". Operations more complex or for which code is already existing can be implemented

through UDFs, that is: server-side code external to the DBMS which gets linked into the server at

invocation time. Obviously, UDFs can greatly enhance DBMS functionality, e.g., for adding in

 Array Databases Report

 - p. 36 -

domain-specific functionality. Some systems even implement core array functionality via UDFs.

To avoid confusion we list built-in and UDF-enabled functionality separately.

Import/export capabilities:

 Data formats: what data formats are supported, and to what degree?

 ETL tools: what mechanisms exist to deal with inconsistent and incomplete import data?

 Updates to regions within arrays: How selectively can array cells be updated? The (usually

massive) arrays need to be built piecewise, and sometimes need to be updated in application-

dependent areas; for example, a road map raster layer may need to be updated exactly along

the course of a road that has been changed, defined maybe through some polygonal area.

Client interfaces:

 Domain-independent interfaces: which domain-independent interfaces exist for sending

queries and presenting results?

 Domain-specific interfaces: which domain-specific clients exist for sending queries and

presenting results?

Functionality beyond arrays: can queries perform operations involving arrays, but transcending the

array paradigm? This section is a mere start and should be extended in future. However, at the current

state of the art it is not yet clear which generic functionality is most relevant.

o polygon/raster clipping: Can a clipping (i.e., join) be performed between raster and

vector data? Such functionality is important in brain research (ex: analyze brain regions

defined in some atlas), in geo services (ex: long-term vegetation development over a

particular country), and many more applications. Sometimes such clipping is confined to

2-D x/y, but some engines allow n-D polygons.

Standards support: Which array service standards does the tool support? Currently, two standards are

particularly relevant for arrays or “datacubes”:

 ISO SQL 9075 Part 15: Multi-Dimensional Arrays (MDA) extends the SQL query language with

domain-neutral modeling and query support for n-D arrays [26], adopting the rasdaman query

model [34]. As an additional effect, SQL/MDA establishes a seamless integration of (array) data

and (relational) metadata which is seen as a game changer for science and engineering data.

 OGC Web Coverage Processing Service (WCPS) defines a geo datacube analytics language [13]

[14]. Its core principles are similar to SQL/MDA, with two min differences. First, WPCS knows

about geo semantics, understanding spatial and temporal axes, coordinate reference systems

(and transformations between them). It is based on the OGC datacube standard which centers

around the model of spatio-temporal coverage data [36]. Second, it is prepared for integration

with XPath/XQuery as most metadata today are stored in XML. Experimentally, such an integrat-

ion has already been performed [30]. Within the EarthServer initiative, WCPS has demonstrated

its capabilities on Petabyte datacube holdings [3].

 Array Databases Report

 - p. 37 -

7.2.2 Feature Matrix

 Array DBMS

 full-stack Array DBMS Add-on array support

 rasdaman SciDB SciQL EXTASCID PostGIS Raster Oracle
GeoRaster

Teradata
Arrays

Data model

dimensions n-D n-D n-D n-D 2D 2D 1..5-D

array extensibility all axes,
lower and

upper bound

all axes,
lower and

upper
bound

all axes, lower and
upper bound

? X & Y axes,
lower and

upper bound

yes no

cell data types int, float,
complex,

structs

numeric
types,

datetime

Any SQL data type ?
(presumably

C++
primitive

types)

int, float, band-
wise structs

int & float
(various
lengths),
structs

common SQL
data types

(except var-
iable length)

null values yes, null
velue sets

and intervals,
can be

assigned
dynamically

yes (single
null)

yes, SQL-style
(single null)

? yes (single
value)

yes, SQL-
style (single

value)

yes, SQL-style
(single value);

defined at
table creation

time

Data integration

relational tables yes, via
SQL/MDA std

no yes yes yes, via
postgresql

yes yes

XML stores yes, via WCPS
std

no no
(MonetDB/XQuery
is not maintained

since 2011)

no yes, via
postgresql

yes yes

RDF stores yes, with
AMOS II

no yes no Only via
postgresql

plugins

yes yes

 Array Databases Report

 - p. 38 -

Other OSM, OGR

Domain specific? generic generic generic generic geo raster geo raster generic

horizontal spatial
axes

yes no no no yes yes no

height/depth axis yes no no no no no no

time axis yes np no no no no no

Processing model

query language
expressiveness
(built-in)

declarative
array QL

declarative
array QL

declarative array
QL

no,
function

calls

array functions
with specific
microsyntax,

not tightly
integrated with

SQL

PL/SQL +
object-

relational
functions
with sub-
language

array functions
with specific
microsyntax,

not tightly
integrated
with SQL

formal semantics Array Algebra no no no no no no

tightly integrated
with SQL or some
other QL

yes, via
SQL/MDA std

no yes no array 'Map
Algebra' syntax
separate from

SQL

no no

optimizable yes yes yes no yes no (array
functionality
not integrat-
ed with QL)

no

subsetting (trim,
slice)

yes yes yes no yes trim yes

common cell
operations

yes yes yes no yes yes yes

arbitrary new
 array derivation

yes yes yes no yes yes only up to
2559 cells;

initialization
with literals or
through UDF

aggregation yes yes yes no yes yes yes

 Array Databases Report

 - p. 39 -

array joins yes yes yes no yes no

Tomlin's Map
 Algebra

yes yes on principle, via
WHERE clause
predicates on

indexes

no in MapAlgebra()
function (only

local, focal)

only local only local

external function
invocation (UDF)

yes yes yes yes yes yes yes

Import / export

data formats large number
of formats:
CSV, JSON,
(Geo)TIFF,

PNG, NetCDF,
JPEG2000,
GRIB2, etc.

CSV/text,
binary
server
format

FITS, MSEED, BAM
and (Geo)TIFF

? large number of
formats, includ-

ing GeoTIFF

TIFF, GIF,
BMP, PNG

?

data cleansing yes, ETL tool no no ? no no no

array cells update any cell or
region

any cell or
region

any cell or region ? down to single
cell level

down to
single cell

level

down to single
cell level

Client interfaces

domain-independent python, R python, R,
julia

python, R ? psql PL/SQL Teradata SQL

domain-specific many geo
clients via

OGC
standards:

OpenLayers,

? ? ? MapServer,
GeoServer,

Deegree, QGIS,
...

? no

 Array Databases Report

 - p. 40 -

QGIS, NASA
WorldWind,

...

Beyond arrays

polygon/raster
 clipping

yes no no no yes (2D) no no

Standards support

ISO SQL MDA yes no no no no no no

OGC / ISO geo
 datacubes
 (coverages)

yes no no no no no no

Remarks "when creating
overviews of a
specific factor
from a set of

rasters that are
aligned, it is

possible for the
overviews to

not align.”

 some funct-
ionality only
on 1D arrays;

array size
limited to less

than 64 kB,
array generat-

ion to 2559
cells; array

operators in
function syn-
tax, no infix
(like "a+b");

 Array tools

 OPeNDAP
Hyrax

xarray Tensor-
Flow

Wendelin
.core

Google
Earth

Engine

Open
Data
Cube

xtensor boost::
geometry

Ophidia TileDB

 Array Databases Report

 - p. 41 -

Data model

Dimensions n-D N-D N-D n-D 2-D 2-D, 3-D N-D N-D N-D n-D

array
 extensibility

no yes all axes,
in-

memory

yes ? yes all axes,
in-

memory

all axes,
in-

memory

yes yes

cell data
 types

numeric
types

docs

unclear,

assuming

same as

numpy

int,
float,
string,
bool,

structs

python
numeric

data
types

likely
various
numeric

types

netCDF
cell data

types

C++
data
types

C++ data
types

C prim-
itives?

Num-

eric

types,

fixed

array,

variab-

le

array,

string

null values no yes yes
(placeho

lders)

no no no no no ? yes

Data integration no

relational tables yes no no no no no no no no no

XML stores yes no no no no no no no no no

RDF stores yes no no no no no no no No Key-

value

store

other

Domain specific? generic generic machine
learning

generic geo raster geo raster astrono
my

generic generic no

 Array Databases Report

 - p. 42 -

horizontal
 spatial axes

yes yes no no yes yes no no No no

height/depth
 axis

? yes no no no no no no No no

time axis yes yes no no no yes no no No

Processing model no

 query language
 expressiveness
 (built-in)

 no,
python
library

no,
python
library

no,
functional

calls,
python

and
JavaScript

no, client-
side

python
calls

no, C++
library

no, C++
library

no,
client-
side

comma
nd line

or
python

no

formal semantics no no,

python

no no no no no no no no

tightly integrated
 with SQL or some
 other QL

no no no no no no no no no no

optimizable no no no no to some
extent

(see
physical
model)

no no yes yes yes

subsetting
 (trim, slice)

yes no yes yes yes
(function

call)

yes,
through
client-
side

python

yes In-
memory

yes no

common cell
 operations

no yes yes yes yes
(function

call)

yes,
through
client-

yes In-
memory

yes no

 Array Databases Report

 - p. 43 -

side
python

arbitrary new
 array derivation

no yes yes yes yes
(function

call)

yes,
through
client-
side

python

yes In-
memory

no no

aggregation yes, with
NcML

yes yes yes yes
(function

call)

yes,
through
client-
side

python

yes In-
memory

yes no

array joins no yes yes no yes
(function

call)

no yes yes, main
memory

yes,
INTER-
CUBE

operat-
ion; re-
quires

identical
tiling of

both
arrays

no

Tomlin's Map Algebra no yes yes,
through
python

user
code

no only local yes,
through
client-
side

python

no no no no

external function
invocation (UDF)

no yes yes, via
python

user
code

yes, via
python

user code

not
invocatio

n from
within EE
functions,

but
through

no yes, via
C++ user

code

yes, via
C++ code

yes, via
shell or
python

no

 Array Databases Report

 - p. 44 -

own
wrapping
code in

host
language

Import / export

data formats Import:
csv, dap-
reader,
dsp, ff,

fits, gdal,
h5, hdf,

hdf4/5, …
Export:

ascii, net-
CDF, Bin-
ary (DAP),

xml

large

number

of

formats,

anything

that

python

can

understan

d through

a library

Export:
binary
check-
point
files

(state) +
Saved-
Model;
import
from
same

no GeoTIFF netCDF no import
requires
external

code

FITS,
NetCDF,

JSON

no

data cleansing yes no No no upload of
massive

data
through
Google

yes no no ? yes

array cells update no any cell or

region

any cell
or

region

any cell or
region

down to
single cell

level

no update
function-

ality

any cell
or

region

down to
single cell

no
update

function
ality

yes

Client interfaces

domain-independent C API,
Web

request

 Python python,
c++,

java, go

python, C,
Fortran

? python
API

C++ C++ python C++

 Array Databases Report

 - p. 45 -

interface

domain-specific OGC WCS
standard

 No no no ? ? no no ? no

Beyond arrays

polygon/raster
 clipping

no ? no no yes, 2D no no yes no no

Standards support

ISO SQL MDA no no no no no no no no no no

OGC / ISO geo
datacubes (coverages)

WCS 2.0 no no no no no no no no no

 MapReduce

Data model

Dimensions N-D N-D

array extensibility all axes all axes

cell data types int Bool, int, float, complex, structs

null values yes Yes

Data integration

relational tables no no

XML stores no no

RDF stores no no

 Array Databases Report

 - p. 46 -

other - -

Domain specific? generic generic

horizontal spatial axes yes yes

height/depth axis yes yes

time axis yes yes

Processing model

query language expressiveness (built-in) yes, functional no, transformations and actions

formal semantics yes no

tightly integrated with SQL or some other QL no no

optimizable yes yes

subsetting (trim, slice) yes yes

common cell operations ? yes

arbitrary new array derivation ? yes

aggregation yes yes

array joins no no

Tomlin's Map Algebra no no

external function invocation (UDF) no yes, via Java code

Import / export

 Array Databases Report

 - p. 47 -

data formats NetCDF, HDF NetCDF, HDF, CSV

data cleansing no no

array cells update ? ?

Client interfaces

domain-independent Java Java, python

domain-specific no no

Beyond arrays

polygon/raster clipping no not built in

Standards support

ISO SQL MDA no no

OGC / ISO geo datacubes (coverages) no no

 Array Databases Report

 - p. 48 -

7.3 Tuning and Optimization

7.3.1 Criteria

This level defines how data are managed internally, including storage management, distribution, parallel

processing, etc. We have looked at both automatic mechanisms (summarized under optimization) and

administrator (or even user) accessible mechanisms to influence system behavior.

 Tuning Parameters:

o Partitioning is indispensable for handling arrays larger than server RAM, and even larger

than disk partitions. Some systems perform an automatic partitioning, others allow ad-

ministrators to configure partitioning, maybe even through a dedicated storage layout

language [6] – which obviously is advantageous given the high impact of partitioning on

query performance [23].

o Compression: This includes both lossless and lossy compression techniques. Depending

on the data properties, lossless compression may have little or gigantic impact. For ex-

ample, natural images compress to about 80% of their original volume whereas them-

atic map layers (which essentially are quite sparse binary masks) can compress to about

5%. Lossy compression may be offered, but is dangerous as it may introduce artifacts –

think inaccuracies – at tile boundaries.

o Distribution of either complete arrays or the tiles of an array enables horizontal scaling,

at the price of dynamic reassembly. In particular, join operations have to be crafted

carefully to maintain satisfying performance. Therefore, service operators should be

able to influence placement of arrays and their partitions.

o Caching: as always in databases, caching can accomplish a significant speed-up. Disting-

uishing factors are: what can be cached and reused – only complete results, or also int-

ermediate results? Does cache content have to be matched exactly, or can approximate

cache hits be reused?

 Optimization techniques:

o Query rewriting: as explained earlier, replacing query expressions by some more effic-

ient method can have a significant impact; further, it frees users from thinking about the

most efficient formulation. Note that this mechanism requires a query language with

runtime analysis of incoming code.

o Common subexpression elimination means that the query engine is able to spot ident-

ical parts within query and evaluate them only once, rather than every time the identical

subexpression appears. Again, this frees users from thinking about the most efficient

way of writing their queries.

o Cost-based optimization estimates the cost of answering a query before actually exe-

cuting it. There is a wide field of opportunities, with a huge potential of improving re-

sponse times. For example, when performing a distributed join “a+b” where both arrays

are sitting on different nodes – possibly even connected through a high-latency wide-

area networks – then it can make a significant difference whether array a is transported

 Array Databases Report

 - p. 49 -

to array b, or b gets transported to a, or a shared approach is pursued. A decision can be

made base on the actual tiling of both arrays, among other impact factors [5].

o Just-in-time compilation of incoming queries generates CPU code that subsequently is

executed for answering the query. Obviously, such machine code is substantially faster

than interpreting the query or some script code, like python. It can even be substantially

faster than precompiled C++ code. This principle can be extended to generating target

code for multiple cores and for mixed target hardware, such as CPU and GPU.

o Notably, all the above techniques can be combined advantageously through an intelli-

gent optimizer.

 Array Databases Report

 - p. 50 -

7.3.2 Feature Matrix

 Array DBMS

 full-stack Array DBMS Add-on array support

Rasdaman SciDB SciQL EXTASCID PostGIS Raster

Oracle
GeoRaster

Teradata
Arrays

Tuning Parameters

partitioning any nD tiling regular nD
chunking

no any nD chunking small arrays (100x100
recommended), query to

explicitly manage
assembling larger arrays

from tiles

yes (during
raster

creation)

no

compression several lossy
and lossless

methods (zlib,
RLE, CCITT G4,
wavelets, ...)

RLE no no no yes (JPEG,
DEFLATE)

no

distribution automatic query
distribution,

peer federation
(shared nothing)

yes (shared-
nothing)

no yes (shared-
memory, shared-

disk servers as
well as shared-

nothing clusters)

no yes no

caching yes, can reuse
approximate

matches

yes, persistent
chunk caching,

temporary result
caching (exact

match)

? no no yes no

Optimization

query rewriting yes, ~150 rules yes yes no no no no

common
 subexpression

yes ? ? no no no no

 Array Databases Report

 - p. 51 -

 elimination

cost-based
 optimization

yes ? ? no no no no

just-in-time query
 compilation,
 mixed hardware

yes no no no no no no

 Array tools

OPeN-
DAP

xarray
Tensor-

Flow
wendelin.

core

Google
Earth

Engine

OpenData
Cube

xtensor
boost::

geometry
Ophidia TileDB

Tuning Parameters

partitioning yes, as
per

NetCDF

no no maybe
indirectly, via

NEO ZODB

no no no no regular

tiling

compression yes, as
per

NetCDF

no sparse
tensor

no no no no yes zlib) yes,

per tile

 Array Databases Report

 - p. 52 -

distribution No no yes, with
Cloud ML

maybe
indirectly, via

NEO ZODB

no no no yes yes,

if the under-

lying VFS

supports it

like HDFS

does

caching No no yes yes yes yes no ? yes

Optimization

query rewriting No no no no no no no no no

common
 subexpression
 elimination

No no no no yes no no no no

cost-based
 optimization

No no no no no no no no no

just-in-time
 query comp.,
 mixed hardware

No no no no no no no no no no

 MapReduce

 SciHadoop SciSpark

Tuning Parameters

Partitioning yes Yes

Compression no No

Distribution yes Yes

Caching no Yes

 Array Databases Report

 - p. 53 -

Optimization

query rewriting no no

common subexpression
 elimination

no Yes,
implicit through caching

cost-based optimization no no

just-in-time query compilation, mixed hardware no no

 Array Databases Report

 - p. 54 -

7.4 Architectural Comparison

7.4.1 Criteria

This section aims at shedding some light on the high-level architecture of the systems and tools. As such,

there is usually not a “better” or “worse” as in a comparative benchmark – rather, this section is of in-

formative nature. An exception is the list of potential limitations.

 implementation paradigm: what is the overall architecture approach?

 storage organization:

o does the system support partitioning (tiling, chunking) of arrays?

o does the system support non-regular tiling schemes? Which ones?

o What mechanisms does the system support for managing data partitioning?

o can tiles of an array reside on separate computers, while the system maintains a

logically integrated view on the array?

o can the system process data maintained externally, not controlled by the DBMS?

o Can the system process data stored in tape archives?

 Processing & parallelism:

o which parallelization mechanisms does the system support: local single thread vs

multicore-local vs multinode-cluster/cloud vs federation

o does the system have a single point of failure?

o federations

o heterogeneous hardware support

 Limitations: Are there any particular known limitations?

 Array Databases Report

 - p. 55 -

7.4.2 Feature Matrix

 Array DBMS

 full-stack Array DBMS add-on Array support

rasdaman SciDB SciQL EXTASCID PostGIS Raster

Oracle
GeoRaster

Teradata
Arrays

Architecture paradigm full-stack Array
DBMS

implementation

full-stack Array
DBMS

implementation

SQL +
proprietary
extension

extension
to GLADE

SQL + object-
relational types

Oracle
proprietary

SQL +
UDFs

Storage organization

partitioning any nD tiling nD, regular no any nD
tiling

done by user
(and re-

assembled
through query)

2D, regular no

non-regular tiling any nD tiling no no yes yes (with
manual re-
assembly in

query)

no no

managing
 data
 partitioning

via query
language

via query
language

no manually via ingestion
script

yes no

tiles on separate
 computers

 yes no yes no yes no

processing on
 preeexisting archives
 (with their individual
 organization)

yes, any archive
structure

no no (data vaults
come closest,
but import on

query)

no yes
(out-of-band)

 no

 Array Databases Report

 - p. 56 -

tape archive access yes no no no no ? no

Processing & parallelism

parallelization
 mechanisms

inter- and intra-
query

parallelization

inter- and intra-
query

parallelization

inter- and intra-
query

parallelization

via GLADE
engine

none known yes (Tomlin
local

operations)

no

single point
 of failure?

no yes
(orchestrator)

yes ? yes no ?

Federations yes no no no no no no

heterogeneous
 hardware support

 no no

Remarks recommended
tile size 100x100

 array size
limited to
less than

64 kB

 Array tools

OPeNDAP xarray

Tensor-
Flow

wendeli
n.core

Google
Earth

Engine

Open-
Data-
Cube

xtensor
boost::

geometry
Ophidia TileDB

Architecture
paradigm

Web
frontend,
based on
DAP prot-
ocol, with
format-
specific

processors
in the
back-

python

library

python
with
XLA

(Acceler
ated

Linear
Algebra)

python
library

for
arrays
larger
than
RAM

Google
proprietary

python +
xarray

extension
to Mathe-

matica

C++
library for

main-
memory

array
handling

MySQL +
UDFs +

MPI

C++

library,

storage

manager

for dense

& sparse

multi-

dimensio

 Array Databases Report

 - p. 57 -

ground nal arrays

Storage
organization

partitioning yes, as per
NetCDF

no (main

memory

centric)

no yes, via
NEO

ZODB,
but

array
agnostic

yes
(typically,
256x256
pixels to

match in-
put pre-

processing)

yes no no no Yes,
regular
tiling

non-regular
 tiling

yes, as per
NetCDF

no no no no no no no no No

managing
 data
 partitioning

no no no no internally
fixed, not

under user
control

via
ingest-

ion
script

no no no Yes

tiles on
 separate
 computers

no no no yes, via
NEO

ZODB

yes no no no no yes, via

VFS (virt-

ual file

system)

with dist-

ribution

similar to

HDFS

processing on
 preexisting
 archives

no no no no no
(data must

sit in

no no no no no

 Array Databases Report

 - p. 58 -

 (with their
 individual
 organization)

Google)

tape archive
access

no no no no no no no no no no

Processing &
parallelism

parallelization
 mechanisms

no yes yes,
various
paralleli
zation

method
s,

CPU/GP
U

no yes (Google
infrastructu

re)

no no yes
("embarra

ssingly
parallel"

operation
s, one by

one)

 Yes

single point
 of failure?

n.a. yes yes no ? n.a. yes n.a. yes No

federations no no no no no no no no No

Heterogeneous
 hardware
 support

no no yes no no no No

Remarks main
memory

main
memory

 main
memory

of
desktop

 MapReduce

SciHadoop SciSpark

Architecture paradigm MapReduce MapReduce

 Array Databases Report

 - p. 59 -

Storage organization

partitioning yes, regular tiling chosen by user, and

based on the partitioning of the input data

yes, regular tiling chosen by user, and

based on the partitioning of the input data

non-regular tiling no no

managing data partitioning yes yes

tiles on separate computers Yes yes

processing on preeexisting archives (with their
individual organization)

Yes yes

tape archive access No no

Processing & parallelism

parallelization mechanisms yes, MapReduce yes, MapReduce

single point of failure? yes, NameNode yes, Spark master

federations No no

heterogeneous hardware support No yes, GPU (1)

 Array Databases Report

 - p. 60 -

7.5 References used
For the elicitation of the above feature matrices the following references have been used for the

systems investigated:

 boost::geometry:

o boost: http://www.boost.org/doc/libs/1_50_0/libs/geometry

 EXTASCID:

o http://faculty.ucmerced.edu/frusu/Projects/GLADE/extascid.html
o [17][18]

 Google Earth Engine:

o Google: https://developers.google.com/earth-engine/

o [25]

 OPeNDAP:

o Opendap: http://docs.opendap.org/index.php/QuickStart

o Opendap:

https://opendap.github.io/documentation/UserGuideComprehensive.html#WWW_Inte

rface

o Opendap:

https://opendap.github.io/documentation/UserGuideComprehensive.html#NetCDFTool

s

o Opendap: https://www.unidata.ucar.edu/software/thredds/v4.5/tds/TDS.html

o Opendap: https://www.opendap.org/support/faq/server/matlab-status

o Opendap: https://opendap.github.io/hyrax_guide/Master_Hyrax_Guide.html

 OpenDataCube2:

o ODC: https://ac.els-cdn.com/S0034425717301086/1-s2.0-S0034425717301086-

main.pdf

o ODC: http://datacube-core.readthedocs.io/en/latest/ops/config.html#ingestion-config

o ODC: http://nbviewer.jupyter.org/github/opendatacube/datacube-

core/blob/develop/examples/notebooks/Datacube_Summary.ipynb

o ODC: https://www.slideshare.net/AmazonWebServices/earth-on-aws-nextgeneration-

open-data-platforms

 Ophidia:

o Ophidia: http://ophidia.cmcc.it/documentation/

 Oracle GeoRaster:

o Oracle: https://docs.oracle.com/cd/B19306_01/appdev.102/b14254/geor_intro.htm

o Oracle: https://docs.oracle.com/database/121/GEORS/basic-georaster-

operations.htm#GEORS300

 PostGIS Raster:

o PostgreSQL: https://postgis.net/docs/

2
 Open Data Cube is also known as Australian Data Cube, CEOS Data Cube, and some other names: “adoption of

the AGDCv2 codebase by NASA's Systems Engineering Office for the Committee on Earth Observing Satellites (the
CEOS-SEO)”

http://www.boost.org/doc/libs/1_50_0/libs/geometry
http://faculty.ucmerced.edu/frusu/Projects/GLADE/extascid.html
https://developers.google.com/earth-engine/
http://docs.opendap.org/index.php/QuickStart
https://opendap.github.io/documentation/UserGuideComprehensive.html#WWW_Interface
https://opendap.github.io/documentation/UserGuideComprehensive.html#WWW_Interface
https://opendap.github.io/documentation/UserGuideComprehensive.html#NetCDFTools
https://opendap.github.io/documentation/UserGuideComprehensive.html#NetCDFTools
https://www.unidata.ucar.edu/software/thredds/v4.5/tds/TDS.html
https://www.opendap.org/support/faq/server/matlab-status
https://opendap.github.io/hyrax_guide/Master_Hyrax_Guide.html
https://ac.els-cdn.com/S0034425717301086/1-s2.0-S0034425717301086-main.pdf
https://ac.els-cdn.com/S0034425717301086/1-s2.0-S0034425717301086-main.pdf
http://datacube-core.readthedocs.io/en/latest/ops/config.html#ingestion-config
http://nbviewer.jupyter.org/github/opendatacube/datacube-core/blob/develop/examples/notebooks/Datacube_Summary.ipynb
http://nbviewer.jupyter.org/github/opendatacube/datacube-core/blob/develop/examples/notebooks/Datacube_Summary.ipynb
https://www.slideshare.net/AmazonWebServices/earth-on-aws-nextgeneration-open-data-platforms
https://www.slideshare.net/AmazonWebServices/earth-on-aws-nextgeneration-open-data-platforms
http://ophidia.cmcc.it/documentation/
https://docs.oracle.com/cd/B19306_01/appdev.102/b14254/geor_intro.htm
https://docs.oracle.com/database/121/GEORS/basic-georaster-operations.htm#GEORS300
https://docs.oracle.com/database/121/GEORS/basic-georaster-operations.htm#GEORS300
https://postgis.net/docs/

 Array Databases Report

 - p. 61 -

o PostgreSQL: http://postgis.net/features/

o PostgreSQL: http://postgis.net/docs/RT_ST_MapAlgebra.html

o PostgreSQL: http://postgis.net/docs/manual-

dev/using_raster_dataman.html#RT_Raster_Loader

 rasdaman:

o rasdaman: www.rasdaman.org

o [2][3][5][6][7][11][20][34][38][33][31][14][30][3]

 SciDB:

o [16][19][42]
o Paradigm4: https://paradigm4.atlassian.net/wiki/spaces/ESD/overview
o Paradigm4: https://github.com/Paradigm4

 SciHadoop:

o DAMASC research group.

 SciQL:

o [47][27]
o MonetDB: https://en.wikipedia.org/wiki/MonetDB

 SciSpark:

o https://scispark.jpl.nasa.gov/

o https://databricks.com/blog/2016/10/27/gpu-acceleration-in-databricks.html

 TensorFlow:

o Tensorflow: https://www.tensorflow.org/get_started/
o Tensorflow: https://cloud.google.com/ml-engine/docs/distributed-tensorflow-mnist-

cloud-datalab

 Teradata Arrays:

o Teradata:
https://www.info.teradata.com/HTMLPubs/DB_TTU_14_00/index.html#page/SQL_Refe
rence/B035_1145_111A/ARRAY_Functions.081.001.html

 wendelin.core:

o Wendelin.core: https://lab.nexedi.com/nexedi/wendelin.core

o Wendelin.core: https://www.nexedi.com/wendelin-Core.Tutorial.2016

o Wendelin.core: https://lab.nexedi.com/nexedi/neoppod/blob/master/README.rst

 xarray:

o http://xarray.pydata.org

o http://xarray.pydata.org/en/stable/why-xarray.html

o http://xarray.pydata.org/en/stable/generated/xarray.DataArray.dtype.html?highlight=d

type

o http://xarray.pydata.org/en/stable/generated/xarray.DataArray.isnull.html

 xtensor:

o xtensor: https://xtensor.readthedocs.io/en/latest/
o xtensor: https://github.com/QuantStack/xtensor

http://postgis.net/features/
http://postgis.net/docs/RT_ST_MapAlgebra.html
http://postgis.net/docs/manual-dev/using_raster_dataman.html#RT_Raster_Loader
http://postgis.net/docs/manual-dev/using_raster_dataman.html#RT_Raster_Loader
http://www.rasdaman.org/
https://paradigm4.atlassian.net/wiki/spaces/ESD/overview
https://github.com/Paradigm4
https://systems.soe.ucsc.edu/projects/damasc#proj1
https://en.wikipedia.org/wiki/MonetDB
https://scispark.jpl.nasa.gov/
https://databricks.com/blog/2016/10/27/gpu-acceleration-in-databricks.html
https://www.tensorflow.org/get_started/
https://cloud.google.com/ml-engine/docs/distributed-tensorflow-mnist-cloud-datalab
https://cloud.google.com/ml-engine/docs/distributed-tensorflow-mnist-cloud-datalab
https://www.info.teradata.com/HTMLPubs/DB_TTU_14_00/index.html#page/SQL_Reference/B035_1145_111A/ARRAY_Functions.081.001.html
https://www.info.teradata.com/HTMLPubs/DB_TTU_14_00/index.html#page/SQL_Reference/B035_1145_111A/ARRAY_Functions.081.001.html
https://lab.nexedi.com/nexedi/wendelin.core
https://www.nexedi.com/wendelin-Core.Tutorial.2016
https://lab.nexedi.com/nexedi/neoppod/blob/master/README.rst
http://xarray.pydata.org/
http://xarray.pydata.org/en/stable/why-xarray.html
http://xarray.pydata.org/en/stable/generated/xarray.DataArray.dtype.html?highlight=dtype
http://xarray.pydata.org/en/stable/generated/xarray.DataArray.dtype.html?highlight=dtype
http://xarray.pydata.org/en/stable/generated/xarray.DataArray.isnull.html
https://xtensor.readthedocs.io/en/latest/
https://github.com/QuantStack/xtensor

 Array Databases Report

 - p. 62 -

7.6 Performance Comparison

7.6.1 Systems tested

The benchmark tests various functionalities, data sizings, and also the effect of parallelization. For this

report, four systems have been measured: rasdaman, SciDB, PostGIS Raster, and Open Data Cube. These

represent three Array DBMSs with different implementation paradigms; hence, the choice can be

considered representative for the field. Open Data Cue was chosen as a representative of array tools

based on scripting languages. Not present are MapReduce-type systems, due to resource constraints –

this is left for future investigation.

Operations benchmarked challenge efficient multi-dimensional data access in presence of tiling as well

as operations executed on data. For the purpose of this test, focus was on “local operations” as per

Tomlin’s Map Algebra, i.e.: the result pixel of an array depends on one corresponding pixel in each input

array (often there is just one input array, in case of array joins there are two input arrays). Operations

which take one input array and transform each pixel are often characterized as “embarrassingly parallel”

because each pixel can be processed independently, which allows for an easy distribution across cores

without the need for respecting Euclidean neighbourhood of pixels. That is the case for more complex

operations, such as Tomlin’s focal, zonal, and global operations; examples include convolution and

practically all relevant Linear Algebra operations, such as matrix multiplication, tensor factorization,

PCA, and the like. In ISO SQL/MDA, for example, a convolution operation on array a using 3x3 kernel k

would make use of the pattern

mdarray [x(0:m), y(0:n)]

elements mdaggregate +

 over [kx(-1:1), ky(-1:1)]

 using a[x+kx,y+ky] * k[kx,ky]

Once operations are not “embarrassingly parallel” there is a wide open field for implementation ingen-

uity to parallelize them efficiently. In a future version of this benchmark such operations should be test-

ed in addition. Likewise, array joins become non-trivial once the input arrays to be combined convey a

different tiling. While solutions have been proposed in literature, such as [5], testing this was not subject

of this evaluation either. Finally, some commercial tools could not be evaluated; a special case is Google

Earth Engine which only runs as a black box inside the enhanced Google infrastructure so that tool com-

parison on identical hardware is impossible.

Generally, while comparative benchmarks are among the results most looked at, they are at the same

time particularly laborious to obtain. The author team has made a best effort to do as much comparison

as possible – still, it remains a wide open field which certainly deserves further attention in future. Act-

ually, it is planned to continue evaluation work beyond finalization of this report.

The benchmark code is available as part of the rasdaman source code at www.rasdaman.org.

7.6.2 Testing approach

The approach followed is based on and extends current literature on array database benchmarking, such

as [49][48] [18][50] (in chronological order). A main consensus seems that several categories of perform-

http://www.rasdaman.org/

 Array Databases Report

 - p. 63 -

ance factors can be distinguished, the most important being: storage access, array-generating operat-

ions, and aggregation operations. Following these categories we have established a series of test situat-

ions that can be translated directly into queries in case of Array Databases, and which need to be pro-

grammed via command line, python, or C++ code for the other tools. For each category several different

types of queries have been devised:

 Binary operations combining two arrays, such as “a+b”. Which binary operator this is can be

considered of less importance here – we randomly chose addition. The queries cover different

array dimensions and array operands with both matching and mismatching tiles.

 Binary operations applying some scalar to an array, like “a+5”; again, we chose addition as the

representative tested.

 Domain-modifying operations which do not change the array values as such, like shift, extend,

and band combination (e.g., combining three images into a 3-band RGB).

 Subsetting operations involving slicing, trimming, and mixed on 2-D and 3-D arrays. While sub-

setting is also a domain modifying operation we put it in its own category due to its importance

and versatility.

 Unary operations like sine calculation, type casting, and array aggregation.

 “Blocking” operations which require materializing the whole array before they can be evaluated.

 The CASE statement and concatenation are somewhat special operations that do not fit well in

the other categories.

Each query class in turn has several variations differing in the size of the arrays involved (40 kB - 4 GB),

number of tiles per array (1 – 10,000 tiles), the size of the output array, etc. The table below lists the

queries, expressed in the syntax of ISO SQL/MDA.

Table 1: Array benchmark queries

ID Description Query

B1 Sum of the array’s elements MDSUM(c)

B2
For each element in an array the result element
is 1 if its value is 0, otherwise the result is the
common logarithm of its value

CASE

 WHEN c = 0 THEN 1

 ELSE LOG10(c)

END

B3 Cast all elements to unsigned 8-bit values MDCAST(c AS char)

B4 Concatenate two arrays along the first axis MDCONCAT(c, c, 1)

B5 Encode an array to TIFF
MDENCODE(c,

 "image/tiff")

B6
Extend the spatial domain of an array to twice its
width and height

MDRESHAPE(c,

 [0:MDAXIS HI(c,x)*2,

 0:MDAXIS HI(c,y)*2

]

)

B7 Add two 1-D arrays with mismatching tiles c + d

B8 Add two 2-D arrays with matching tiles c + c

 Array Databases Report

 - p. 64 -

B9 Add two 2-D arrays with mismatching tiles c + d

B10
Add the average value of an array to all of its
elements

c + MDAVG(c)

B11
Add a constant scalar value to all elements of an
array

c + 4

B12 Add two 3-D arrays with mismatching tiles c + d

B13 Calculate all percentiles MDQUANTILE(c, 100)

B14 Join several arrays into a single multi-band array

MDJOIN(

 c,

 MDARRAY MDEXTENT(c)

 ELEMENTS 3, c

)

B15 Scale-up (2x) an array

MDSCALE(

 c,

 [MDAXIS LO(c,x)

 : MDAXIS HI(c,x)*2,

 MDAXIS LO(c,y)

 : MDAXIS HI(c,y)*2

]

)

B16
Shift the spatial domain by a given shift
coordinate

MDSHIFT(c, [500, -1000])

B17 Calculate the sine of every element in an array SIN(c)

B18 Subset the whole spatial domain c[*:*,*:*]

B19 Select a single element at a particular coordinate c[5, MDAXIS HI(c,y) - 5]

B20 Slice the first axis at a particular point

c[5,

 MDAXIS LO(c,y) + 3

 : MDAXIS HI(c,y) – 3

]

B21 Trim down both axes

c[MDAXIS LO(c,x) + 3

 : MDAXIS HI(c,x) - 3,

 MDAXIS LO(c,y) + 3

 : MDAXIS HI(c,y) – 3

]

B22
Slice the first axis of a 3-D array at a particular
point

c[MDAXIS HI(c,z),

 MDAXIS LO(c,x) + 3

 : MDAXIS HI(c,x) - 3,

 MDAXIS LO(c,y) + 3

 : MDAXIS HI(c,y) – 3

]

7.5.3 The Benchmarks

The benchmark was run on the following systems:

 Open Data Cube 1.5.4

 Array Databases Report

 - p. 65 -

 PostGIS Raster 2.4.1 (all GDAL drivers enabled) on top of PostgreSQL 9.6.6

 rasdaman v9.5

 SciDB 16.9

All the Bx tests of the previous section have been executed on each system, as far as supported. Values

missing indicate this – for example, test B5 performs data format encoding not available in SciDB.

Every run was repeated 10x and then averaged.

The machine on which the benchmark has been evaluated has the following characteristics:

 OS: Ubuntu 14.04

 CPU: Intel Xeon E5-2609v3 @ 1.90GHz; 2x 6-core CPUs, 16MB L3 cache, 256kB L2, 32kB L1

 RAM: 64GB DDR4 2133MHz

 Disk: SSD, read speed 520 MB/sec

7.6.4 Assessment

Results are shown in Fig. 8. Surprisingly, runtime results were quite divergent, therefore the time scale is

logarithmic.

As it turns out the technology landscape around Array Databases is quite varied, ranging from full-stack

from-scratch implementations over object-relational DBMS add-ons to MapReduce add-ons, and all in

between. In this line-up of 19 array tools many are natively designed as a service while some of them

comprise command line tools or libraries which are not complete services, but may aid in developing

services. Technologies were evaluated through

 a feature walk-through addressing functionality (logical model), tuning and optimization

(physical level), and architecture;

 a comparative benchmark between selected systems.

Investigation, for resource reasons, could only cover storage access and “embarrassingly parallel” oper-

ations; what is left for future research are operations whose parallelization is more involved, including

general Linear Algebra and joins. Nevertheless, some interesting facts can be observed.

Overall, a clear ranking is visible with rasdaman being fastest, followed by Open Data Cube (up to 74x

slower), PostGIS Raster (up to 82x slower), and SciDB (up to 304x slower), in sequence.

 Array Databases Report

 - p. 66 -

Fig. 8. Performance comparison of rasdaman, PostGIS Raster, Open Data Cube, and SciDB
(time axis logarithmic, secs; missing values represent tests not supported by the target system).

0,1

1

10

100

1000

10000

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22

ti
m

e
/l

o
g(

se
cs

)

rasdaman

SciDB

Open Data Cube

PostGIS

 Array Databases Report

 - p. 67 -

Systems offering a query language were easier to benchmark – tests could be formulated, without any

extra programming, in a few lines sent to the server. Without query languages, extra programming

effort was necessary which sometimes turned out quite involved. Functionality offered consisted of pre-

cooked functions which may or may not meet user requirements – in this case: our test queries. Effect-

ively, this extra burden was one reason why several systems could not be evaluated. For a system choice

this means: such tools will offer only focused functionality and still leave significant burden to the user.

Hence, extrapolating the notion of “analysis-ready data” we demand “analysis-ready services” which

stand out through their flexibility to ask any (simple or complex) query, any time.

Compiled languages like C++ still seem to offer significant performance advantages over scripting lang-

uages like python. In a direct comparison, a C/C++ implementation was found to be faster by an order of

magnitude over python code [32]. The first system, rasterio, uses python only as its frontend with C/C++

based GDAL as its workhorse. The second one, ArcPy, relies on a pure python implementation under-

neath, namely numpy.

UDFs can be very efficient in main memory, but general orchestration tasks of the DBMS – like storage

access in face of tiling and distribution as well as allowing arbitrary queries, rather than a predefined set

of UDF functionality – still remains an issue. Implementers obviously tend to prefer add-on architectures

where array functionality is built on top of existing systems which offer targeted features like parallelism

(such as Hadoop and Spark) or persistent storage management (like relational DBMSs). However, as

these base layers are not array-aware such architectures at least today do not achieve a performance

and flexibility comparable to full-stack implementations as the comparison shows.

While a hands-on evaluation of MapReduce type systems was not possible within this study there is rel-

evant work at XLDB 2018 on a comparison of ArrayUDF (an array processing framework built on UDFs in

databases, from the same group doing EXTASCID) with Spark [46]. Authors report that “In a series of

performance tests on large scientific data sets, we have observed that ArrayUDF outperforms Apache

Spark by as much as 2070X on the same high-performance computing system”. We need to bear in

mind, though, that a pure UDF without a query language constitutes just a fixed block of code perform-

ing one task – this is relatively easy to keep under control and parallelize whereas orchestration of some

arbitrary query can change the performance picture substantially.

Generally, there seems to be a performance hierarchy with full-stack, from-scratch C++ implementations

being fastest, followed by mixed implementations combining UDFs (read: handcrafted implementation)

with a database-style orchestration engine, followed by add-ons to Hadoop / Spark, followed by object-

relational add-ons.

 Array Databases Report

 - p. 68 -

8 Summary
With this report, RDA hopes to provide a useful basis for choosing technology when it comes to flexible,

scalable analytics on massive spatio-temporal sensor, image, simulation, and statistics data. Such arrays

constitute a large part of today’s Big Data, forming a basic data category next to sets, hierarchies, and

general graphs. In view of the known challenges in functionality, performance, scalability, and interop-

erability serving these arrays in a user-friendly way is a major challenge today.

Array Databases seem promising in that they provide the advantage-proven features of a declarative

query language for “shipping code to data”, combined with powerful techniques for efficient server-side

evaluation, with parallelization being just one out of a series of known methods for speed-up and scal-

ability.

In this study, we have provided on introduction and overview of the state of the art in Array Databases

as a tool to serve massive spatio-temporal “datacubes” in an analysis-ready manner. Relevant datacube

standards were listed, together with secondary information for further studies and immersion. Uptake

of this report’s research consists of several Big Data services with Petabyte offerings, with further ones

emerging continuously. Actually, already in its preparation phase this report has found high interest; the

report’s Wiki access statistics indicate more than 12,000 page reads as of February 23, 2018.

The line-up of 19 different tools is an unprecedented technology overview for this emerging field. Array

Databases, command line tools and libraries, as well as MapReduce-based tools have been assessed

comparatively, with a clear provenance for all facts elicited. For some tools, a comparative performance

analysis has been conducted showing that full-stack, clean-slate array C++ implementations convey high-

est performance; python constitutes a basis that comes with a performance penalty upfront, and like-

wise add-on implementations that reuse not array aware architectures (such as object-relational extens-

ions and MapReduce) to emulate array support – although, admittedly, these are faster and easier to

implement. Generally, implementation of the full stack of Array Databases in some fast, compiling

language (like C++) pays off, although it requires a significant implementation effort.

In summary, Array Databases herald a new age in datacube services and spatio-temporal analysis. With

their genuine array support they are superior to other approaches in functionality, performance, and

scalability, and supported by powerful “datacube” standards. Query functionality is independent from

the data encoding, and data can be delivered in the format requested by the user. Our benchmark re-

sults are in line with the increasing number of Array Database deployments on Earth science data in

particular, meantime far beyond the Petabyte frontier.

With the advent of the ISO SQL/MDA standard as the universal datacube query language a game change

can be expected: implementers have clear guidance, which will lead to increased interoperability (which

today effectively does not exist between the systems – only one currently supports relevant standards).

Applications become easily manageable across all domains, and a natural integration with metadata is

provided through the SQL embedding. Further, standardization will form an additional stimulus for both

open-source and proprietary tool developers to jump on this trending technology.

https://www.rd-alliance.org/group/array-database-assessment-wg/wiki/array-database-assessment-working-group

 Array Databases Report

 - p. 69 -

Such data integration will be of paramount importance in future. Standalone array stores form just an-

other silo, even with query capabilities. It will be indispensible to integrate array handling into the meta-

data paradigms applications like to use. As of today, work on array integration has been done on

 sets: the ISO SQL/MDA standard, which is based on the rasdaman query language, integrates

multi-dimensional arrays into SQL [34];

 hierarchies: the xWCPS language extends the OGC WCPS geo array language with metadata

retrieval [29];

 (knowledge) graphs: first research has been done on integration arrays into RDF/SPARQL

databases [2].

Still, despite its breadth, this report uncovers the need for further research. In particular, a deep comp-

arison of the fundamentally different architectures of Array Databases and MapReduce oriented syst-

ems should be of high interest.

Obviously, Michael Stonebraker’s observation of “no one size fits all” is very true also for array support

– as arrays form a separate fundamental data structure next to sets, hierarchies, and graphs, they re-

quire carefully crafted implementations to deliver the usability in terms of flexibility, scalability, per-

formance, and standards conformance which is essential for abroad uptake. Genuine Array Database

technology, therefore, appears most promising for spatio-temporal datacubes, as this study indicates.

 Array Databases Report

 - p. 70 -

References
[1] D. Abadi: On Big Data, Analytics and Hadoop. ODBMS Industry Watch, December 05, 2012,

http://www.odbms.org/blog/2012/12/on-big-data-analytics-and-hadoop-interview-with-daniel-

abadi/, seen on 2018-02-25

[2] A. Andrejev, P. Baumann, D. Misev, T. Risch: Spatio-Temporal Gridded Data Processing on the

Semantic Web. 2015 IEEE Intl. Conf. on Data Science and Data Intensive Systems (DSDIS 2015),

Sydney, Australia, December 11-13, 2015

[3] P. Baumann, A.P. Rossi, B. Bell, O. Clements, B. Evans, H. Hoenig, P. Hogan, G.1 Kakaletris, P.

Koltsida, S. Mantovani, R. Marco Figuera, V. Merticariu, D. Misev, B. Pham Huu, S. Siemen, J.

Wagemann: Fostering Cross-Disciplinary Earth Science Through Datacube Analytics. In. P.P.

Mathieu, C. Aubrecht (eds.): Earth Observation Open Science and Innovation - Changing the

World One Pixel at a Time, International Space Science Institute (ISSI), 2017, pp. 91 - 119

[4] P. Baumann, B. Howe, K. Orsborn, S. Stefanova: Proceedings of the 2011 EDBT/ICDT Workshop

on Array Databases. Uppsala, Sweden, March 25, 2011

[5] P. Baumann, V. Merticariu: On the Efficient Evaluation of Array Joins. Proc. Workshop Big Data in

the Geo Sciences (co-located with IEEE Big Data), Santa Clara, US, October 29, 2015

[6] P. Baumann, S. Feyzabadi, C. Jucovschi: Putting Pixels in Place: A Storage Layout Language for

Scientific Data. Proc. IEEE ICDM Workshop on Spatial and Spatiotemporal Data Mining (SSTDM),

December 14, 2010, Sydney, Australia, pp. 194 – 201

[7] P. Baumann: Management of multidimensional discrete data, VLDB J., 3(4)1994, pp. 401–444,

1994

[8] P. Baumann: The Datacube Manifesto. Available on http://earthserver.eu/tech/datacube-

manifesto, seen on 2018-02-25

[9] P. Baumann: Array Databases. In: T. Özsu, L. Liu (eds.): Encyclopedia of Database Systems,

Springer, 2017

[10] P. Baumann: Language Support for Raster Image Manipulation in Databases. Proc. Int.

Workshop on Graphics Modeling, Visualization in Science & Technology, Darmstadt/Germany,

April 13 - 14, 1992

[11] P. Baumann: A Database Array Algebra for Spatio-Temporal Data and Beyond. Proc. Intl.

Workshop on Next Generation Information Technologies and Systems (NGITS), July 5-7, 1999,

Zikhron Yaakov, Israel, Springer LNCS 1649

[12] P. Baumann: On the Management of Multidimensional Discrete Data. VLDB Journal 4(3)1994,

Special Issue on Spatial Database Systems, pp. 401 - 444

[13] P. Baumann: OGC Web Coverage Processing Service (WCPS) Language Interface Standard,
version 1.0. OGC document 08-068r2, 2010

[14] P. Baumann: The OGC Web Coverage Processing Service (WCPS) Standard. Geoinformatica,
14(4)2010, pp. 447 – 479

[15] M. Blaschka, C. Sapia, G. Höfling, B. Dinter: Finding Your Way through Multidimensional Data

Models. DEXA Workshop Data Warehouse Design and OLAP Technology (DWDOT'98), Vienna,

Austria, August 24-28, 1998, pp. 198-203

http://www.odbms.org/blog/2012/12/on-big-data-analytics-and-hadoop-interview-with-daniel-abadi/
http://www.odbms.org/blog/2012/12/on-big-data-analytics-and-hadoop-interview-with-daniel-abadi/
http://www.rasdaman.com/ArrayDatabases-Workshop/
http://www.rasdaman.com/ArrayDatabases-Workshop/
http://earthserver.eu/tech/datacube-manifesto
http://earthserver.eu/tech/datacube-manifesto
https://link.springer.com/referenceworkentry/10.1007/978-1-4899-7993-3_2061-2

 Array Databases Report

 - p. 71 -

[16] P.G. Brown: Overview of SciDB: large scale array storage, processing and analysis, in Proc. ACM

SIGMOD, 2010, pp. 963–968

[17] Y. Cheng, Florin Rusu: Astronomical Data Processing in EXTASCID. Proc. 25th Intl. Conf. on

Scientific and Statistical Database Management (SSDBM), 2013, pp. 47:1–47:4

[18] Y. Cheng, F. Rusu: Formal Representation of the SS-DB Benchmark and Experimental Evaluation

in EXTASCID. Distributed and Parallel Databases, 2013, pp. 1–41

[19] P. Cudre-Mauroux et al: A demonstration of SciDB: a science-oriented DBMS. Proc. VLDB,

2(2)2009, pp. 1534–1537, 2009

[20] A. Dehmel: A Compression Engine for Multidimensional Array Database Systems. PhD thesis, TU

München, 2002

[21] A. Dumitru, V. Merticariu, P. Baumann: Exploring Cloud Opportunities from an Array Database

Perspective. Proc ACM SIGMOD Workshop on Data Analytics in the Cloud (DanaC'2014), June

2014, Snowbird, USA

[22] Gisuser: EarthServer: 1+ Petabyte Analysis-Ready Datacubes. Gis User, December 2017,

http://gisuser.com/2017/12/earthserver-1-petabyte-analysis-ready-datacubes/, seen on 2018-

02-25

[23] P. Furtado, P. Baumann: Storage of Multidimensional Arrays based on Arbitrary Tiling. Proc.

ICDE'99, March 23-26, 1999, Sydney, Australia

[24] W. Gibson: Data, data everywhere. The Economist Special report: Managing information, 2010.

http://www.economist.com/node/15557443, seen on 2018-02-25

[25] N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, R. Moore: Google Earth Engine:

Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, Volume 202,

2017, pp. 18-27

[26] ISO: Information technology — Database languages — SQL — Part 15: Multi-Dimensional Arrays
(SQL/MDA). ISO IS 9075-15:2017

[27] M. Ivanova, M.L. Kersten, S. Manegold: Data Vaults: a Symbiosis between Database Technology

and Scientific File Repositories. Proc. SSDBM, 2012, pp. 485–494

[28] M. Koubarakis, M. Datcu, C. Kontoes, U. Di Giammatteo, S. Manegold, E. Klien: TELEIOS: a

database-powered virtual earth observatory, Proc. VLDB, vol. 5, 2012, pp. 2010–2013

[29] P. Liakos, P. Koltsida, G. Kakaletris, P. Baumann: xWCPS: Bridging the Gap Between Array and

Semi-structured Data. Proc. Knowledge Engineering and Knowledge Management, Springer

2015

[30] P. Liakos, P. Koltsida, P. Baumann, Y. Ioannidis, A. Delis: A Distributed Infrastructure for Earth-

Science Big Data Retrieval. Intl. Journal of Cooperative Information Systems, 24(2)2015

[31] V. Liaukevich, D. Misev, P. Baumann, V Merticariu: Location and Processing Aware Datacube

Caching. Proc. 29th Intl. Conf. on Scientific and Statistical Database Management (SSDBM '17).

ACM, New York, USA, Article 34

[32] M. Marek-Spartz: Comparing Map Algebra Implementations for Python: Rasterio and ArcPy.

Volume 18, Papers in Resource Analysis. 14pp. Saint Mary’s University of Minnesota Central

Services Press, http://www.gis.smumn.edu/GradProjects/Marek-SpartzM.pdf, seen on 2018-02-

25

http://gisuser.com/2017/12/earthserver-1-petabyte-analysis-ready-datacubes/
http://www.economist.com/node/15557443
http://www.gis.smumn.edu/GradProjects/Marek-SpartzM.pdf

 Array Databases Report

 - p. 72 -

[33] G. Merticariu, D. Misev, P. Baumann: Measuring Storage Access Performance in Array

Databases. Proc. 7th Workshop on Big Data Benchmarking (WBDB), December 14-15, 2015, New

Delhi, India

[34] D. Misev, P. Baumann: Enhancing Science Support in SQL. Proc. Workshop on Data and

Computational Science Technologies for Earth Science Research (co-located with IEEE BigData),

Santa Clara, US, October 29, 2015

[35] J.H.P. Oosthoek, A.P. Rossi, P. Baumann, D. Misev, P. Campalani: PlanetServer: Towards online

analysis of planetary data. Planetary Data, 2012.

[36] P. Baumann, E. Hirschorn, J. Maso, V. Merticariu, D. Misev: All in One: Encoding Spatio-

Temporal Big Data in XML, JSON, and RDF without Information Loss. Proc. IEEE International

Workshop on Big Spatial Data (BSD 2017), Boston, 11 December 2017

[37] PostGIS: PostGIS Raster manual. http://postgis.net/docs/manual-

dev/using_raster_dataman.html, seen on 2018-02-25

[38] B. Reiner, K. Hahn: Hierarchical Storage Support and Management for Large-Scale Multi-

dimensional Array Database Management Systems. Proc. DEXA, Aix en Provence, France, 2002

[39] G. Ritter, J. Wilson, J. Davidson: Image algebra: An Overview. Computer Vision, Graphics, and

Image Processing, 49(1):297-331, 1990

[40] S. Sarawagi, M. Stonebraker: Efficient Organization of Large Multidimensional Arrays. Proc. Intl.

Conf. on Data Engineering ICDE, Houston, USA, 1994, pp. 328-336

[41] E. Soroush, M. Balazinska, D. Wang: ArrayStore: A Storage Manager for Complex Parallel Array

Processing. Proc. ACM SIGMOD, Athens, Greece, 2011, pp. 253 – 264

[42] M. Stonebraker, P. Brown, D. Zhang and J. Becla: SciDB: A Database Management System for

Applications with Complex Analytics. Computing in Science & Engineering, vol. 15, no. 3, May-

June 2013, pp. 54-62

[43] D. Tomlin: A Map Algebra. Harvard Graduate School of Design, 1990.

[44] Teradata: User‑Defined Data Type, ARRAY Data Type, and VARRAY Data Type Limits.

https://www.info.teradata.com/HTMLPubs/DB_TTU_14_00/index.html#page/SQL_Reference/B

035_1141_111A/appc.109.11.html, seen on 2018-02-25

[45] P. Webster: Supercomputing the Climate: NASA’s Big Data Mission. CSC World Computer

Sciences Corporation, 2012

[46] J. Wu: ArrayUDF Explores Structural Locality for Faster Scientific Analyses. XLDB, Stanford, USA,

April/May 2018, https://conf.slac.stanford.edu/xldb2018/event-information/lightning-

talks#mon4, seen on 2018-02-25

[47] Y. Zhang, M.L. Kersten, M. Ivanova, N. Nes: SciQL, Bridging the Gap between Science and

Relational DBMS. Proc. IDEAS, 2011, pp. 124 – 133

[48] P. Baumann, H. Stamerjohanns: Towards a Systematic Benchmark for Array Database Systems.

Workshop on Big Data Benchmarking (WBDB'2012), December 2012, Pune, India, Springer LNCS

8163

[49] S. Stancu-Mara, P. Baumann:A Comparative Benchmark of Large Objects in Relational

Databases. Proc. IDEAS 2008, Coimbra, Portugal, November 2008

http://postgis.net/docs/manual-dev/using_raster_dataman.html
http://postgis.net/docs/manual-dev/using_raster_dataman.html
https://www.info.teradata.com/HTMLPubs/DB_TTU_14_00/index.html#page/SQL_Reference/B035_1141_111A/appc.109.11.html
https://www.info.teradata.com/HTMLPubs/DB_TTU_14_00/index.html#page/SQL_Reference/B035_1141_111A/appc.109.11.html
https://conf.slac.stanford.edu/xldb2018/event-information/lightning-talks#mon4
https://conf.slac.stanford.edu/xldb2018/event-information/lightning-talks#mon4

 Array Databases Report

 - p. 73 -

[50] G. Merticariu, D. Misev, P. Baumann: Towards a General Array Database Benchmark: Measuring

Storage Access Performance in Array Databases. Proc. 7th Workshop on Big Data Benchmarking

(WBDB), December 2015, New Delhi, India

