
RDA Europe 3 - Collaboration Project Final Report

Page 1 of 48

Final Report

BARRACUDA

November 30, 2017
Authors:
Sandro Fiore (CMCC), Fabrizio Antonio (CMCC)
sandro.fiore@cmcc.it, fabrizio.antonio@cmcc.it

External advisor:
Tobias Weigel (DKRZ, Senior RDA expert)
weigel@dkrz.de

Executive Summary

In complex data domains, unique and persistent identifiers (PIDs) are at the core
of proper data management and access. Yet, it is useful to know the metadata
elements in advance to set the services for data processing. Such metadata is
called PID Information Type (PIT).
The working group on Persistent Identifier Information Types of the Research
Data Alliance focused on the essential types of information associated with
persistent identifiers by developing a conceptual model for structuring typed
information.
We present here the design of the RDA-PIT support into Ophidia, a big data
analytics research effort aimed at providing support for the access, analysis and
mining of scientific (n-dimensional array based) data. The document highlights
the most relevant implementation aspects related to the integration of the PID-
resolving interface into Ophidia. Moreover, the report provides an application of
the multi-model experiment for the precipitation trend analysis implemented in
the EU INDIGO-DataCloud project.

Objectives

BARRACUDA (pid-BAsedwoRkflowfoRclimAteChangeUsingophiDiA) is a
collaboration project about a case study on Climate models intercomparison data
analysis led by the CMCC Foundation in the context of the EU H2020 INDIGO-
Data Cloud Project1 and mainly related to the climate change community
organized within the European Network for Earth System2modelling.
The case study is directly connected to the Coupled Model Intercomparison
Project3, one of the most internationally relevant and largest climate

1https://www.indigo-datacloud.eu/
2ENES - https://verc.enes.org/community/about-enes
3CMIP - http://cmip-pcmdi.llnl.gov/cmip5/

RDA Europe 3 - Collaboration Project Final Report

Page 2 of 48

experiments as well as to the Earth System Grid Federation4 infrastructure in
terms of existing eco-system/service.
The proposed case study deals with relevant multi-model experiments like the
trend analysis and itaimsat, providing a reference implementation for the
coming CMIP6-based multi-model intercomparison data analysis experiments.
The project will include the integration of a PID handle service for the PIDs
management, in order to bring this multi-model climate analytics experiment
case study one step forward, by adopting the RDA recommendation on the PID
Information Types5 (PIT) framework into the data lifecycle of the climate
experiment proposed in this application.
The Ophidia big data analytics framework6, a high-performance array-database
engine exploited in the INDIGO-Data Cloud project for climate change data
analysis, will be extended to include the RDA-PIT support in order to:

● uniquely identify a climate data resource managed in the
analysis/processing system through PIDs;

● make the whole system provenance-aware by adding additional metadata
elements to the existing PIDs and assign new ones to the output of a data
analysis experiment run by Ophidia.

The proposed PID-based extensions will be tested using a PID Handle Service
instance kindly provided by DKRZ7.

Initial State

The ESGF infrastructure currently offers basic PID management, but it does not
cover full provenance tracing and data processing. In particular, the process of
re-publishing analysis output data with PIDs is a step not yet implemented in
production-level environments like ESGF, but of great relevance for the involved
community especially now that server-side processing components are going to
be added to the ESGF software stack.
In general, the project outcomes will reinforce the multi-model climate analytics
experiment case study by (i) making new data products interoperable, (ii)
enabling data provenance and experiments reproducibility at large scale and (iii)
following a more complete and interoperable workflow lifecycle for data
publication in close cooperation with the ESGF eco-system/services.

RDA PIT Specification

The working group on Persistent Identifier Information Types of the Research
Data Alliance focused on the essential types of information associated with
persistent identifiers by developing a conceptual model for PID record
properties, aggregated types and profiles, useful to enable typed information
structure design, as well as an application programming interface to access typed

4ESGF - http://esgf.llnl.gov
5RDA PID Information Type WG -
https://b2share.eudat.eu/records/a6b1b95fe7ac4ed98e882d6bc7c7e775
6www.ophidia.cmcc.it
7DKRZ - https://www.dkrz.de/

RDA Europe 3 - Collaboration Project Final Report

Page 3 of 48

information and a demonstrator to implement the interface. The WG has
managed to elucidate the basic terminology concerning PID Information Types
and the necessary interaction among technical components that allow typing.
The unique and persistent identifiers (PIDs) prove essential to correctly manage
and access data / for proper data management and access in complex data
contexts. Whereas more basic identifier services rely on the association between
the identifier and a data object providing an identity, more complex ID services
allow to capture this relationship, thus exposing it directly through the service
itself as identifier metadata. In this way, information retrieval is standardized
and the complexity reduced. The repository and catalog load in consequently
smaller, because it’s possible to access the identifier metadata without resorting
to the resource itself.
Identifier metadata enable discovery, access, integrity and authenticity
verification services and a variety of other use cases. To do so, the provided
service should be able to establish whether the types of information required are
available in the PID metadata.
The RDA PID Information Types Working Group was set up to identify a
framework for PID information types, as well as winning approval for some basic
information types and defining the integration process concerning other types of
information.
The goal of the PIT WG activities was to harmonize the basic information types
associated with persistent identifiers. In order to achieve this, the necessary
tools and concepts had to be developed first. The main outcome in conceptual
terms was a framework for information type definition whereas the key outcome
in practical terms was the design of an API and a prototypical implementation
revealing core types usage. The term “PID Information Type” encompasses more
precise notions of identifier metadata elements and their aggregates. PID records
actually contain a small subset of digital object metadata, also known as the
persistent state information, that is useful to retrieve at least some state
information from the repositories, which is exposed in a simple format through
the generic PID Information Types API.
The WG came to the conclusion that the acceptance of a common set of core
types relies on practice. It actually takes time and the work of a small group
doesn’t suffice. Practice does not assure stability though, therefore some
governance would definitely be necessary. What turns out to be a key element is
the type registry.
The absence of a fixed set of accepted core types didn’t prevent the WG to
provide insight concerning information types definition and their potential use.
The structure of registered properties and their aggregates is a key element as
well as the functionality of the type registry. The main conceptual outcome
concerns the framework for structuring types and their availability by means of
the type registry.

Conceptual model

The service providing the PIT API has been conceived with a modular design to
provide different infrastructures with different adapters, since existing PID
infrastructures have different capabilities and designs. The users of the PIT API
might be end-user services at times, yet it’s usually the case of other
infrastructure components. The adoption of the PIT API by PID infrastructures

RDA Europe 3 - Collaboration Project Final Report

and its integration into their services brings about a convergence of the two
lowest architecture layers.
Metadata represent an i
PID records are actually a kind of metadata, yet smaller and unable to replace
established metadata systems.

Fig. 1: The high-level architecture for the PID Information Types API prototype is

composed of several layers, and the PIT API lies between existing PID infrastructures and

their native PID APIs and some consumer clients. The Type Registry forms a core

dependency situated aside from the layer structure.

Data model

The core entities have been split into two main models that illustrate their usage
and naming specifications.

The property-type-profile model

This model was used in the prototype and every PID
number of properties. Every property has its PID and the key elements are the
name, range and values. The PID record only stores the PID and the values,
whereas the name and range are gathered in the type registry. The latter is
where every property is registered, and besides the property range and the
name, the type registry provides additional information, such as a description
text and source information (author, creation date, contact details).
A type is made up of a number of bot
type is registered in the type registry, along with the PID, description text and
provenance information. A PID record matches a type if all mandatory properties
of that type are provided, whereas filtering a PID
mandatory and optional properties.
A profile consists of several types. A PID record matches a profile if all
mandatory properties of all profile types are provided. There are two profile
models: in the first one, a profile is
global PID, whereas the second model provides for the registration of the profile
in the type registry, thus increasing interoperability.

Collaboration Project Final Report

and its integration into their services brings about a convergence of the two
lowest architecture layers.
Metadata represent an important and widely used cross-disciplinary solution.
PID records are actually a kind of metadata, yet smaller and unable to replace
established metadata systems.

level architecture for the PID Information Types API prototype is

composed of several layers, and the PIT API lies between existing PID infrastructures and

their native PID APIs and some consumer clients. The Type Registry forms a core

endency situated aside from the layer structure.

The core entities have been split into two main models that illustrate their usage
and naming specifications.

profile model

This model was used in the prototype and every PID record is made up of a
number of properties. Every property has its PID and the key elements are the
name, range and values. The PID record only stores the PID and the values,
whereas the name and range are gathered in the type registry. The latter is

e every property is registered, and besides the property range and the
name, the type registry provides additional information, such as a description
text and source information (author, creation date, contact details).
A type is made up of a number of both mandatory and optional properties. Every
type is registered in the type registry, along with the PID, description text and
provenance information. A PID record matches a type if all mandatory properties
of that type are provided, whereas filtering a PID record by type will show all
mandatory and optional properties.
A profile consists of several types. A PID record matches a profile if all
mandatory properties of all profile types are provided. There are two profile
models: in the first one, a profile is not necessarily identifiable and carries no
global PID, whereas the second model provides for the registration of the profile
in the type registry, thus increasing interoperability.

Page 4 of 48

and its integration into their services brings about a convergence of the two

disciplinary solution.
PID records are actually a kind of metadata, yet smaller and unable to replace

level architecture for the PID Information Types API prototype is

composed of several layers, and the PIT API lies between existing PID infrastructures and

their native PID APIs and some consumer clients. The Type Registry forms a core

The core entities have been split into two main models that illustrate their usage

record is made up of a
number of properties. Every property has its PID and the key elements are the
name, range and values. The PID record only stores the PID and the values,
whereas the name and range are gathered in the type registry. The latter is

e every property is registered, and besides the property range and the
name, the type registry provides additional information, such as a description
text and source information (author, creation date, contact details).

h mandatory and optional properties. Every
type is registered in the type registry, along with the PID, description text and
provenance information. A PID record matches a type if all mandatory properties

record by type will show all

A profile consists of several types. A PID record matches a profile if all
mandatory properties of all profile types are provided. There are two profile

not necessarily identifiable and carries no
global PID, whereas the second model provides for the registration of the profile

RDA Europe 3 - Collaboration Project Final Report

The reason behind profile inclusion is the attempt to prevent types from
proliferating, specifically when a community intends to use a predefined type
just by adding or excluding an additional property.

The type-profile model

This is a simpler model that allows to type the elements of a PID record and
register those types in the type registry. Every type bears a PID and consists of a
name, range and value, like the property of the property
Similarly, types are aggregated into profiles, which can refer to optional and
mandatory types. It is possible to check if a PID record matches a profile, as in
the case of the property-
type-profile model for the pro

Model selection

The property-type-profile model may generally be closer to an understanding of
PID records from a domain metadata perspective. Therefore, the type
model is simpler and should be preferred
In the full property-type
aggregate types. Services will typically work with types, by requiring a specific
PID record to provide information conforming to a particular
or may not be used. Therefore, the type
subset of the full model.

Collaboration Project Final Report

The reason behind profile inclusion is the attempt to prevent types from
proliferating, specifically when a community intends to use a predefined type
just by adding or excluding an additional property.

This is a simpler model that allows to type the elements of a PID record and
register those types in the type registry. Every type bears a PID and consists of a
name, range and value, like the property of the property-type-profile model.

are aggregated into profiles, which can refer to optional and
mandatory types. It is possible to check if a PID record matches a profile, as in

-type-profile model. There is no equivalent entity in the
profile model for the profiles of the property-type-profile model.

profile model may generally be closer to an understanding of
PID records from a domain metadata perspective. Therefore, the type
model is simpler and should be preferred over the property-type-profile.

type-profile model, types aggregate properties and profiles
aggregate types. Services will typically work with types, by requiring a specific
PID record to provide information conforming to a particular type. Profiles may
or may not be used. Therefore, the type-profile can be expressed as a particular

Fig. 2: PIT data model.

Page 5 of 48

The reason behind profile inclusion is the attempt to prevent types from
proliferating, specifically when a community intends to use a predefined type

This is a simpler model that allows to type the elements of a PID record and
register those types in the type registry. Every type bears a PID and consists of a

profile model.
are aggregated into profiles, which can refer to optional and

mandatory types. It is possible to check if a PID record matches a profile, as in
profile model. There is no equivalent entity in the

profile model.

profile model may generally be closer to an understanding of
PID records from a domain metadata perspective. Therefore, the type-profile

profile.
profile model, types aggregate properties and profiles

aggregate types. Services will typically work with types, by requiring a specific
type. Profiles may

profile can be expressed as a particular

RDA Europe 3 - Collaboration Project Final Report

Fig. 3: Type Registry data model. A service may require types and/or profiles;

API overview

The RDA PIT API provides facilities to query and manipulate typed information
available from persistent identifiers and shared through type registries.
The API has been designed in order for it to be agnostic towards the underlying
identifier system, provided that it is possible to store and retrieve additional
information associated with a single identifier.

Ophidia and Terminal

Ophidia [1] is a research effort aimed at addressing big data challenges for
eScience. It represents a
efficient scientific data analysis and management of multi
heterogeneous data sets.
The system provides an array
organization to partition and distrib
across multiple compute nodes. It implements the data cube abstraction from
OLAP systems and leverages parallel computing, data distribution, jointly with a
native in-memory engine to perform parallel I/O opera
description of the Ophidia Framework architecture, its main components, along
with the design choices is provided in background works [2][3].
Currently, the Ophidia framework provides more than 50 parallel (MPI
and sequential operators to perform (i) data cube
import/export, subsetting and reduction, and (ii) metadata management, data

Collaboration Project Final Report

Fig. 3: Type Registry data model. A service may require types and/or profiles;

none of these are mandatory.

The RDA PIT API provides facilities to query and manipulate typed information
available from persistent identifiers and shared through type registries.
The API has been designed in order for it to be agnostic towards the underlying
identifier system, provided that it is possible to store and retrieve additional
information associated with a single identifier.

Ophidia [1] is a research effort aimed at addressing big data challenges for
eScience. It represents a framework providing a complete environment for
efficient scientific data analysis and management of multi
heterogeneous data sets.
The system provides an array-based storage model and a hierarchical storage
organization to partition and distribute the multidimensional scientific data sets
across multiple compute nodes. It implements the data cube abstraction from
OLAP systems and leverages parallel computing, data distribution, jointly with a

memory engine to perform parallel I/O operations. A complete
description of the Ophidia Framework architecture, its main components, along
with the design choices is provided in background works [2][3].
Currently, the Ophidia framework provides more than 50 parallel (MPI

tors to perform (i) data cube-oriented operations like data
import/export, subsetting and reduction, and (ii) metadata management, data

Page 6 of 48

Fig. 3: Type Registry data model. A service may require types and/or profiles;

The RDA PIT API provides facilities to query and manipulate typed information
available from persistent identifiers and shared through type registries.
The API has been designed in order for it to be agnostic towards the underlying
identifier system, provided that it is possible to store and retrieve additional

Ophidia [1] is a research effort aimed at addressing big data challenges for
framework providing a complete environment for

efficient scientific data analysis and management of multi-dimensional

based storage model and a hierarchical storage
ute the multidimensional scientific data sets

across multiple compute nodes. It implements the data cube abstraction from
OLAP systems and leverages parallel computing, data distribution, jointly with a

tions. A complete
description of the Ophidia Framework architecture, its main components, along

Currently, the Ophidia framework provides more than 50 parallel (MPI-based)
oriented operations like data

import/export, subsetting and reduction, and (ii) metadata management, data

RDA Europe 3 - Collaboration Project Final Report

Page 7 of 48

cube provenance and file system management. Additionally, the framework
implements a wide set of primitives to perform operations on multi-dimensional
binary arrays, which include, among the others, arithmetical/mathematical
functions, time-series aggregation, statistical computations, linear regression
and interpolation. Complex workflows, including more operators and primitives,
can be executed by submitting a JSON description of the list of tasks and related
dependencies.
Ophidia supports a number of different communications and security protocols,
so that it has several front-end interfaces:

● REST: it provides a REST architecture based on HTTPS protocol;
● WS-I: it defines a web service based on SOAP over HTTPS;
● OGC: it is a Web Processing Service (WPS);
● GSI/VOMS: it represents a GSI-enabled interface with support for Virtual

Organisations.

Regardless of the interface adopted to access Ophidia, the user can access,
process, view datasets (without necessarily downloading them), execute
operators and primitives, share data with other users and transfer them from/to
other repositories. In this way, the productivity of scientists and researchers is
greatly improved.
Ophidia includes a rich shell-like command-line tool, named Ophidia Terminal,
and a more programmatic interface, named PyOphidia, that can be adopted by
users to submit commands to Ophidia service.
Ophidia Terminal, designed to run over a classic desktop computer as well as a
node of a cluster, is similar to the “bash” program present in almost all Unix-like
environments and includes several useful features such as command history
management , auto-completion of operators, arguments and admitted values, the
management of specific environment variables and user-defined aliases, a
contextual manual with the description of commands and variables, the
management of key combinations for the smart-editing of the command line,
browsing of local and remote file system, rendering of responses and more.
Moreover, the tool deals with the authentication and authorization protocol (e.g.
it automatically appends user credentials or access tokens to commands to be
submitted), facilitating the use of Ophidia interfaces.
In general, an interactive session with the Ophidia Terminal could be described
by the use case shown in Figure 4.

RDA Europe 3 - Collaboration Project Final Report

Fig. 4: Flow diagram of Ophidia Terminal.

It is possible to start the terminal simply by running
with no special options, quickly accessing to the working environment, or setting
some parameters, at command line (e.g. user credentials) as well as by means of
some environmental variables. Then, the user is able to submit comma
Unless a command is referred to a local action (e.g. an update of stored user
credentials), for each command the Ophidia Terminal formats the request to be
sent to Ophidia service according to the selected specific interface, then sends
the message and waits for a reply. Upon receipt, the application formats the
output to be shown to the user (by parsing the response) in case of success or it
displays a notice in case of errors.
To execute a generic operator, the user needs to submit a command having t
following syntax.

oph_operator key1=value1;key2=value2;...;keyN=value N;

The command name is equal to the operator name, whereas the key
containing the equal sign ‘=’ and separated by semicolons, correspond to

Collaboration Project Final Report

Fig. 4: Flow diagram of Ophidia Terminal.

It is possible to start the terminal simply by running the executable “oph_term”
with no special options, quickly accessing to the working environment, or setting
some parameters, at command line (e.g. user credentials) as well as by means of
some environmental variables. Then, the user is able to submit comma
Unless a command is referred to a local action (e.g. an update of stored user
credentials), for each command the Ophidia Terminal formats the request to be
sent to Ophidia service according to the selected specific interface, then sends

d waits for a reply. Upon receipt, the application formats the
output to be shown to the user (by parsing the response) in case of success or it
displays a notice in case of errors.
To execute a generic operator, the user needs to submit a command having t

oph_operator key1=value1;key2=value2;...;keyN=value N;

The command name is equal to the operator name, whereas the key
containing the equal sign ‘=’ and separated by semicolons, correspond to

Page 8 of 48

the executable “oph_term”
with no special options, quickly accessing to the working environment, or setting
some parameters, at command line (e.g. user credentials) as well as by means of
some environmental variables. Then, the user is able to submit commands.
Unless a command is referred to a local action (e.g. an update of stored user
credentials), for each command the Ophidia Terminal formats the request to be
sent to Ophidia service according to the selected specific interface, then sends

d waits for a reply. Upon receipt, the application formats the
output to be shown to the user (by parsing the response) in case of success or it

To execute a generic operator, the user needs to submit a command having the

The command name is equal to the operator name, whereas the key-value pairs,
containing the equal sign ‘=’ and separated by semicolons, correspond to

RDA Europe 3 - Collaboration Project Final Report

Page 9 of 48

operator arguments and related values. Keys must be single words and values
cannot clearly contain semicolons.
After sending the request, the behavior of the terminal depends on the execution
mode:

● in case of asynchronous mode, the tool displays the “job identifier”
(JobID) and shows the prompt for the next to command without waiting
for job completion;

● in case of synchronous mode, the tool waits for the job to be completed
before displaying the identifier and the output.

In both cases, the Ophidia Terminal extracts the “working session identifier”
from the JobID and automatically sets the environmental variable
OPH_SESSION_ID to that value. The role of this identifier, required as argument
by most Ophidia operators, is to group the commands related to a scientific
experiment and the corresponding data cubes. In case these data are shared
among more users, the owner simply has to grant others access to the session
and send them the session identifier. In this way, another user can set the
variable OPH_SESSION_ID to the shared session identifier and access data using
the terminal.
The Ophidia Terminal allows the user to submit single commands and workflows
interactively as well as in batch mode, likewise a bash command.
In Ophidia, each response is a JSON file that may include objects of different
types: simple text; grids and tables; trees; graphs. The terminal is able to
recognize this type of objects and represent them in the most appropriate
manner on the screen: textually as well as graphically. The user can choose
several visualization options: displaying the objects in a compact and tabular
format (basic mode) or printing out additional metadata (extended mode),
showing the results within a GUI or saving them as image on disk, by using the
colour setting of the hosting shell or user-defined colours, etc.. In addition, a
response can simply be displayed as is: this option is very useful when the
output has to be processed by an external tool.
Concerning the use of a GUI to display responses (only for desktop
environment), it is interesting to note how the terminal handles the output of an
Ophidia operator named OPH_CUBEIO. For a given cube, this operator returns a
report with all the transformations performed on an input dataset to produce
that cube (provenance) and some details about the cubes created at each step
and the related operators. In most cases, the report is a linear sequence of
operations starting, for example, from the insertion of a new dataset into the
system (import), passing through a series of operations of data subsetting and
reduction, ending with the publication of the files containing the analyzed data
(export). In other cases, however, the operations can create strongly interlinked
graphs. In these situations, the ability to have a graphical view of the entire
workflow is undoubtedly a better solution. The Ophidia Terminal gives its users
this possibility. Figure 5 shows a sample image generated by processing the
response of OPH_CUBEIO. In this case, two datasets are imported into Ophidia
and compared: some preliminary operations (subsetting, reduction, evaluation
of a primitive) are applied on input datasets before the intercomparison
(OPH_INTERCUBE) and, finally, the result is processed by a

RDA Europe 3 - Collaboration Project Final Report

primitive(OPH_APPLY). The nodes of this graph are related to the cubes
generated at each step and identified by an URL, whereas the edges refer to the
operations. The graph also reports the references to source files.

Fig. 5 : Examp

The Ophidia Terminal also supports other interesting features. For instance, it
can be used to validate the JSON description on a workflow and to show its task
graph before starting the execution. The user simply
“check” setting the name of the JSON file (e.g.

check ./workflow.json arg1 arg2 … argN

During workflow execution , the user is also able to graphically see its progress.
The command “view” has bee

view WORKFLOW_ID

In this example, WORKFLOW_ID is an identifier set by Ophidia service when the
request for a workflow execution is accepted. The identifier is sent back to the
submitter so that the user can refer to that workflow

INDIGO and ENES multi

INDIGO project overview

INDIGO-DataCloud (INtegrating Distributed data Infrastructures for Global
ExplOitation) [4-5] is a project funded under the Horizon2020 frame
program of the European Union, led by the National Institute for Nuclear Physics
(INFN). The project main objective is the development of a data and computing
platform targeting scientific communities and deployable on multiple hardware,
to be provisioned over private or public e

Collaboration Project Final Report

primitive(OPH_APPLY). The nodes of this graph are related to the cubes
generated at each step and identified by an URL, whereas the edges refer to the
operations. The graph also reports the references to source files.

Fig. 5 : Example of response associated with OPH_CUBEIO.

The Ophidia Terminal also supports other interesting features. For instance, it
can be used to validate the JSON description on a workflow and to show its task
graph before starting the execution. The user simply has to submit the command
“check” setting the name of the JSON file (e.g. workflow.json) as an argument:

check ./workflow.json arg1 arg2 … argN

During workflow execution , the user is also able to graphically see its progress.
The command “view” has been designed to this aim:

In this example, WORKFLOW_ID is an identifier set by Ophidia service when the
request for a workflow execution is accepted. The identifier is sent back to the
submitter so that the user can refer to that workflow in next requests.

multi-model experiment on Precipitation Trend Analysis

INDIGO project overview

DataCloud (INtegrating Distributed data Infrastructures for Global
is a project funded under the Horizon2020 frame

program of the European Union, led by the National Institute for Nuclear Physics
(INFN). The project main objective is the development of a data and computing
platform targeting scientific communities and deployable on multiple hardware,

ioned over private or public e-infrastructures.

Page 10 of 48

primitive(OPH_APPLY). The nodes of this graph are related to the cubes
generated at each step and identified by an URL, whereas the edges refer to the

The Ophidia Terminal also supports other interesting features. For instance, it
can be used to validate the JSON description on a workflow and to show its task

has to submit the command
) as an argument:

During workflow execution , the user is also able to graphically see its progress.

In this example, WORKFLOW_ID is an identifier set by Ophidia service when the
request for a workflow execution is accepted. The identifier is sent back to the

in next requests.

n Precipitation Trend Analysis

DataCloud (INtegrating Distributed data Infrastructures for Global
is a project funded under the Horizon2020 framework

program of the European Union, led by the National Institute for Nuclear Physics
(INFN). The project main objective is the development of a data and computing
platform targeting scientific communities and deployable on multiple hardware,

RDA Europe 3 - Collaboration Project Final Report

In the context of Cloud computing, resources as IaaS (Infrastructure as a Service)
are already offered by the public and private sectors, but there is still a lack at
PaaS (Platform as a Service) and SaaS (S
The INDIGO-DataCloud project aims to fill these gaps by overcoming current
challenges in the Cloud computing, storage and network areas, such as, for
example: i) orchestrating and federating Cloud, Grid and HPC (public or
resources ii) overcoming performance issues that limit the massive adoption of
virtualized Cloud resources in large data centers; iii) managing dynamic and
complex workflows for scientific data analysis.
The project extended existing PaaS solution
infrastructures to integrate their existing services and make them available
through AAI services compliant with GEANT’s interfederation policies, thus
guaranteeing transparency and trust in the provisioning of such service
allows the execution of applications on Cloud and Grid based infrastructures, as
well as on HPC clusters.
INDIGO also provided a flexible and modular presentation layer connected to the
PaaS and SaaS frameworks developed within the project, allowing
user experiences and dynamic workflows, also from mobile appliances.

Precipitation Trend Analysis workflow

Precipitation trend analysis has received notable attention during the past
century due to its connection
scientific community. For this reason, a number of models for this atmospheric
variable have been defined.
To better understand the model accuracy of phenomena, the results obtained by
each model have to be compared against historical data f
anomalies. Then, the anomalies have to be compared among the models
(ensemble analysis) to score them and, hence, evaluate the related phenomena.
Figure 6 shows the workflow (next referred to as the “experiment”) to analyze
the precipitation trend over a given spatial domain by comparing the anomalies
related to a number of models in the context of CMIP5 Federated Archive.

Fig. 6: Experiment for precipitation trend analysis

The experiment consists of a number of sub
in parallel, followed by a final workflow performing an ensemble analysis.
Each sub-workflow is associated with a specific climate model involved in the
CMIP5 experiment. A scenar

Collaboration Project Final Report

In the context of Cloud computing, resources as IaaS (Infrastructure as a Service)
are already offered by the public and private sectors, but there is still a lack at
PaaS (Platform as a Service) and SaaS (Software as a Service) levels.

DataCloud project aims to fill these gaps by overcoming current
challenges in the Cloud computing, storage and network areas, such as, for
example: i) orchestrating and federating Cloud, Grid and HPC (public or
resources ii) overcoming performance issues that limit the massive adoption of
virtualized Cloud resources in large data centers; iii) managing dynamic and
complex workflows for scientific data analysis.
The project extended existing PaaS solutions, allowing public and private e
infrastructures to integrate their existing services and make them available
through AAI services compliant with GEANT’s interfederation policies, thus
guaranteeing transparency and trust in the provisioning of such service
allows the execution of applications on Cloud and Grid based infrastructures, as

INDIGO also provided a flexible and modular presentation layer connected to the
PaaS and SaaS frameworks developed within the project, allowing
user experiences and dynamic workflows, also from mobile appliances.

Precipitation Trend Analysis workflow

Precipitation trend analysis has received notable attention during the past
century due to its connection with global climate change, as
scientific community. For this reason, a number of models for this atmospheric
variable have been defined.
To better understand the model accuracy of phenomena, the results obtained by
each model have to be compared against historical data first, to identify possible
anomalies. Then, the anomalies have to be compared among the models
(ensemble analysis) to score them and, hence, evaluate the related phenomena.
Figure 6 shows the workflow (next referred to as the “experiment”) to analyze

recipitation trend over a given spatial domain by comparing the anomalies
related to a number of models in the context of CMIP5 Federated Archive.

Fig. 6: Experiment for precipitation trend analysis

The experiment consists of a number of sub-workflows, which can be executed
in parallel, followed by a final workflow performing an ensemble analysis.

workflow is associated with a specific climate model involved in the
CMIP5 experiment. A scenario must be also defined as input.

Page 11 of 48

In the context of Cloud computing, resources as IaaS (Infrastructure as a Service)
are already offered by the public and private sectors, but there is still a lack at

oftware as a Service) levels.
DataCloud project aims to fill these gaps by overcoming current

challenges in the Cloud computing, storage and network areas, such as, for
example: i) orchestrating and federating Cloud, Grid and HPC (public or private)
resources ii) overcoming performance issues that limit the massive adoption of
virtualized Cloud resources in large data centers; iii) managing dynamic and

s, allowing public and private e-
infrastructures to integrate their existing services and make them available
through AAI services compliant with GEANT’s interfederation policies, thus
guaranteeing transparency and trust in the provisioning of such services. It
allows the execution of applications on Cloud and Grid based infrastructures, as

INDIGO also provided a flexible and modular presentation layer connected to the
PaaS and SaaS frameworks developed within the project, allowing innovative
user experiences and dynamic workflows, also from mobile appliances.

Precipitation trend analysis has received notable attention during the past
 stated by the

scientific community. For this reason, a number of models for this atmospheric

To better understand the model accuracy of phenomena, the results obtained by
irst, to identify possible

anomalies. Then, the anomalies have to be compared among the models
(ensemble analysis) to score them and, hence, evaluate the related phenomena.
Figure 6 shows the workflow (next referred to as the “experiment”) to analyze

recipitation trend over a given spatial domain by comparing the anomalies
related to a number of models in the context of CMIP5 Federated Archive.

workflows, which can be executed
in parallel, followed by a final workflow performing an ensemble analysis.

workflow is associated with a specific climate model involved in the

RDA Europe 3 - Collaboration Project Final Report

Page 12 of 48

The sub-workflow is aimed at performing the following tasks:
● discovery of the two datasets (historical and future scenario data);
● evaluation of the precipitation trend separately for both datasets;
● comparison of the trends over the considered spatial domain;
● 2D map generation.

The ensemble analysis includes the following three steps:

● data gathering;
● data re-gridding;
● accuracy evaluation.

In Figure 6, the sub-workflows are shown on the left within cyan rectangles. The
tasks related to the historical data process are in green rectangles, whereas the
tasks that process data resulting from the model are in red rectangles. The tasks
of the ensemble analysis are on the right within yellow rectangles. It is composed
by a first parallel import of the previous outputs, a central circle for the merge
operation and the final parallel data re-gridding and accuracy evaluation.
Note that the time domain related to historical data is fixed. For instance, the
range 1976-2005 is adopted for the experiment. The time domain related to
models shall have the same duration (e.g. 30 years) though it clearly refers to a
future time range like 2071-2100.
Table 1 provides a list of the models currently supported by the precipitation
trend analysis experiment, with the related time frequencies, scenarios, grid
resolution and institute. More info can be found in [6]

Model name Time

frequen

cies

Scenarios Lat x

Lon (°)

Institute (institute ID)

CCSM4 daily -
monthly

RCP 4.5 -
RCP 8.5

0.95 x
1.25

National Center for
Atmospheric Research
(NCAR)

CMCC-CM daily -
monthly

RCP 4.5 -
RCP 8.5

0.8 x 0.8 Centro Euro-Mediterraneo sui
CambiamentiClimatici
(CMCC)

CMCC-CMS daily -
monthly

RCP 4.5 -
RCP 8.5

1.9 x 1.9 Centro Euro-Mediterraneo sui
CambiamentiClimatici
(CMCC)

CNRM-CM5 daily -
monthly

RCP 4.5 -
RCP 8.5

1.4 x 1.4 Centre National de
RecherchesMétéorologiques /
Centre Européen de
Recherche et Formation
Avancées en
CalculScientifique (CNRM-
CERFACS)

RDA Europe 3 - Collaboration Project Final Report

Page 13 of 48

CanESM2 daily -
monthly

RCP 4.5 -
RCP 8.5

2.8 x 2.8 Canadian Centre for Climate
Modelling and Analysis
(CCCMA)

INM-CM4 daily -
monthly

RCP 4.5 -
RCP 8.5

1.5 x 2.0 Institute for Numerical
Mathematics (INM)

IPSL-CM5A-MR daily -
monthly

RCP 4.5 -
RCP 8.5

1.25 x
2.5

IPSL-CM5A-LR Institut
Pierre-Simon Laplace (IPSL)

MIROC5 daily -
monthly

RCP 4.5 -
RCP 8.5

1.4 x 1.4 Atmosphere and Ocean
Research Institute (The
University of Tokyo), National
Institute for Environmental
Studies, and Japan Agency for
Marine-Earth Science and
Technology (MIROC)

MPI-ESM-MR daily -
monthly

RCP 4.5 -
RCP 8.5

1.9 x 1.9 Max Planck Institute for
Meteorology (MPIM)

MRI-CGCM3 daily -
monthly

RCP 4.5 -
RCP 8.5

1.1 x 1.1 Meteorological Research
Institute (MRI)

NorESM1-M daily -
monthly

RCP 4.5 -
RCP 8.5

1.9 x 2.5 Norwegian Climate Centre
(NCC)

Table 1: List of the models included into the PTA

Project Outcomes

Module 1: Extended scenario

The Ophidia terminal is a robust, comprehensive, effective and extremely usable
command line client that allows users to submit Ophidia commands to the
Ophidia server.
For each user request, the terminal sends a new message with the appropriate
connection parameters and the string corresponding to the request for execution
of a particular operator, which is then interpreted by the functions of the Ophidia
framework.
Once the operator execution terminates, the Oph-Terminal receives the
corresponding response message with the operator output data, which are then
interpreted and appropriately displayed to the user.

RDA Europe 3 - Collaboration Project Final Report

Page 14 of 48

Fig. 7 - General Client-Server interaction

This simple scenario has been extended to integrate the RDA-PIT support into
the Ophidia big data framework. Fig. 8 shows the main components and
interactions relating to the new PID-based workflow for climate change using
Ophidia.

Fig. 8 - Extended Client-Server scenario

The Handle Server stores information resources in the form of persistent
identifiers; the Data Type Registry provides a special class of additional
metadata, named PID Information Types, used to collect information about the
data and that it is usually necessary to know before the data is processed.
The interaction with information types and typed PID records happens via a Web
Service API (PIT Service). The RDA PID Information Types WG has implemented

RDA Europe 3 - Collaboration Project Final Report

Page 15 of 48

a prototypical servlet implementation, which needs to be deployed in a Java
application server (e.g. Apache Tomcat) at client side. The prototype relies on the
type registry prototype provided by the Data Type Registries WG and a
preliminary Handle Server v8 installation provided by the CNRI. The REST
Service must be properly configured, for it to know which identifier service and
type registry to contact.
Clients might need to communicate with each other: the owner of a session can
finely grant access privileges to other users, thus sharing the experiment.

UML Diagrams

The main diagrams that support the design of the Ophidia extension for RDA-PIT
are illustrated as follows.

Use Cases diagram

In this section, a Use Cases-based requirements analysis is presented.
It is possible to identify two types of user actor:

● a producer user, who, after running an experiment (for example, by
executing a workflow), stores the related data and metadata information
in the Handle System;

● a consumer user, who i) searches for handles by some criteria, ii) looks-
up a handle to retrieve all PID Information Types values, and iii) performs
several operations and analysis using the extracted information.

Fig. 9 - Use Cases diagram for the PRODUCER actor

Workflow publishing
As a PRODUCER user, I want to publish a workflow on the PID Handle Service so
that I can share the experiment with other users.

Primary actors:

● User
● System (Ophidia Terminal)
● PIT Service
● Handle Service

Triggers:
● The user runs the insert command

Preconditions
● The user is logged in to the System and has executed a workflow

RDA Europe 3 - Collaboration Project Final Report

Page 16 of 48

Main Flow
1. The User runs the insert command providing all the required arguments

in the form of key-value pairs.
2. The System validates the input arguments.
3. The System sends a POST request to the PIT Service.
4. The PIT Service sends a PUT request to the Handle Service.
5. The Handle Service creates the new handle record.
6. The System notifies that the creation has been successfully performed,

showing the PID of the newly created handle record.
Postconditions

● A new handle record is created at Handle Server side, featuring a
randomly and uniquely generated identifier,.

Extensions
3.a. Arguments verification fails (missing or too many arguments).

Fig. 10 - Use Cases diagram for the CONSUMER actor

PIT Look-up
As a CONSUMER user, I want to look-up a handle by PID in order to retrieve all
the handle records and analyze them.

Primary actors:
● User
● System (Ophidia Terminal)
● PIT Service
● Handle Service
● DTR Service

Triggers:
● The user runs the look-up command

Preconditions
● The user is logged in to the System

Main Flow
1. The User runs the look-up command providing the desired PID.
2. The System validates the input arguments.

RDA Europe 3 - Collaboration Project Final Report

Page 17 of 48

3. The System sends a GET request to the PIT Service.
4. The PIT Service sends a GET request to the Handle Service.
5. The Handle Service resolves the handle record and replies with an array

of handle values.
6. For each handle value, the PIT Service sends a GET request to the DTR

Service to resolve the type identifier.
7. The DTR Service replies with the type definition.
8. The PIT Service replaces the type identifier with the corresponding type

name.
9. The PIT Service gives back to the System an enriched handle record.
10. The System shows all the handle values (type name-type value pairs)

forming the desired handle record.
Extensions

2.a. Arguments verification fails (missing argument).
5.a. No handle found. Go to step 10.
10.a. The System returns a message indicating no handle has been found.

Search for PITs
As a CONSUMER user, I want to search for handle records by key-value pairs in
order to retrieve a list of useful handles.

Primary actors:
● User
● System (Ophidia Terminal)
● PIT Service
● Handle Service
● DTR Service

Triggers:
● The user runs the search command

Preconditions
● The user is logged in to the System

Main Flow
1. The User runs the search command by providing your own search keys.
2. The System validates the input arguments.
3. The System sends a GET request to the PIT Service to list handles under

the working prefix.
4. The PIT Service sends a GET request to the Handle Service.
5. The Handle Service replies with a list of all stored handles.
6. For each handle, the System performs a look-up operation to retrieve all

the handle records, then it applies the user filter.
7. The System gives back only handles satisfying the user search keys.

Extensions
2.a. Arguments verification fails (missing or too many arguments).
7.a. No handle satisfies the search criteria.

RDA Europe 3 - Collaboration Project Final Report

Page 18 of 48

Sequence diagram

The following diagrams show how the main objects involved in the use cases
described above operate and the interaction among them.

Workflow publishing

Fig. 11 - Sequence diagram for the "Workflow publishing" use case

The client, via the dedicated insert command, sends a POST request to the PIT
Service. The key-value pairs, named properties and provided as input arguments
by the user, are sent in the request body in JSON format. The PIT Service
forwards the request to the Handle Server HTTP REST interface by means of a
PUT request to enable storing the enclosed entity under the supplied Request-
URI. If the operation is successful, a new handle record will be stored in the
Handle Server and the PIT Service will notify the PID of the newly created handle
to the client.

PIT Look-up

Fig. 12 - Sequence diagram for the "PIT Look-up" use case

RDA Europe 3 - Collaboration Project Final Report

Page 19 of 48

The client, via the dedicated look-up command, sends a GET request to the PIT
Service to resolve the specified identifier in the form of {prefix}/{suffix}. It also
sets the include_property_names query parameter to true to retrieve the types
name in addition to the types identifier and value. The PIT Service i) forwards
the request to the Handle Server to retrieve the handle record, then, for each
type forming the record, ii) it contacts the Data Type Registry to get the type
definition and resolve the type identifier. The PIT Service replies to the client
with an enriched handle record, containing the types identifiers, names and
values.

Search for PITs

Fig. 13 - Sequence diagram for the "Search for PITs" use case

The client, via the dedicated search command, sends a GET request to the PIT
Service to get all the handles stored under the specified prefix. The PIT Service
forwards the request to the Handle Server and replies with a list of handles. For
each of them, the client performs a look-up operation and checks whether the
handle record values comply with the search criteria provided by the user.

Deployment diagram

Figure 14 shows the Deployment and Component diagram, which depicts the
software components, how they are distributed over the hardware resources
and the interactions among the hardware and software components forming the
system.

RDA Europe 3 - Collaboration Project Final Report

Page 20 of 48

Fig. 14 - Deployment and components diagram

The Ophidia Terminal contains a client function that takes care of the interaction
with the server through the SOAP protocol. SOAP may operate on different
network protocols, among which the most commonly used is HTTP. In Ophidia,
the HTTPS is used to secure communication with the SSL or GSI/VOMS
infrastructure.
The PIT REST Web Service is designed to be agnostic towards the underlying
identifier system. The PIT API prototype is written using Jersey 2 based on JAX-
RS 2.0. It provides facilities to query and manipulate typed information available
from persistent identifiers and all methods return JSON-encoded responses [7].

RDA Europe 3 - Collaboration Project Final Report

Page 21 of 48

The client host communicates with both Handle Server and Data Type Registry
using the HTTP/HTTPS protocol, as well as with the PIT Service.
Concerning the Handle Server HTTP interface, in addition to serve requests in
the native binary Handle protocol of RFC 3652, version 8 is also able to serve
requests made using a REST API [8], with requests and responses expressed via
JSON encoding. All authenticated transactions, such as the creation of a new
handle, must use HTTPS, otherwise they will be ignored resulting in a 403

Forbidden response status.
In the same way, the PIT Service interacts with the Data Type Registry to retrieve
information about the PID Information Types by exploiting its REST API.
Several basic tests have been carried out on the PID Handle Service managed

at DKRZ (https://handle.dkrz.de>, HTTP interface on port 8004) and using the
ePIC PID Information Types Registry8 for types in preparation
(http://dtr.pidconsortium.eu:8081).

Module 2: Design of the typed digital object for the PTA experiment

The structure of the typed digital object used to meet the precipitation trend
analysis experiment requirements relies on well-defined information types, as
defined in the reference Data Type Registry.
As shown in Figure 15, the PTA object is built out of a finite combination of non
Basic PITs made available on the ePIC PID Information Type Registry for the
preparation of types, a special data type registry environment where types are
prepared and made stable by users before they become candidates and finally
get approved.

Fig. 15 - Structure of the PTA typed digital object

8http://dtr.pidconsortium.eu/

RDA Europe 3 - Collaboration Project Final Report

Page 22 of 48

Each non Basic PIT relies on a Basic PIT, which doesn't refer to other PITs but
only uses the elementary JSON-Types ("string", "boolean", "integer", "number",
no objects and arrays) with possible restrictions given for example by regular
expressions or minLength and maxLength validation keywords[9].
A brief explanation of the meaning of each type in the PTA context is illustrated
as follows:

creatorName Name of the workflow submitter

email-address
Email address of the workflow
submitter (useful for session sharing
requests)

title Name of the workflow

description A short description of the typed object

URL Reference to the workflow on GitHub

location
Reference to the output (datacube or
file) of the workflow

identifier-general
Full workflow identifier (session id +
workflow id)

date-time Handle insertion timestamp

Module 3: Terminal extensions

The Ophidia Terminal has been extended by adding three commands which
allow to respectively meet each of the use cases described above:

● pit_insert
● pit_lookup
● pit_search

In a multi-user scenario, these new features would enable different users to
share their own experiments: a "producer" user could run a workflow and store
the related data and metadata information, allowing a "consumer" user to
search, extract and analyze them.

pit_insert command

The pit_insert command allows a user to publish an experiment on the PID
Handle Service after running it.
In the PTA experiment scenario, a PTA typed digital object will be instantiated
through the user inputs and stored at the Handle Server side. The newly created
handle record will have a randomly and uniquely generated persistent identifier.
The user has to provide semicolon separated key-value pairs in the form of

pit_insert PIT_name_1=PIT_value_1;...;PIT_name_N=PIT_value_N

wherePIT_name_istands for the name specified in thetype_i property definition at
Data Type Registry side, and PIT_value_i is the corresponding value provided by

RDA Europe 3 - Collaboration Project Final Report

the user. Values containing spaces must be typed in quotes, which could also be
used (but not required) for single
All the PITs forming the PTA object are mandatory except the
which will be automatically set to the handle i
"YYYY-MM-ddHH:mm:ss" format, in accordance with the regular expression
constraint defined for this type.
The command relies on the RDA
the registerPID method provided to create n

Fig. 16

The PIT REST Service exploits, in turn, the Handle HTTP JSON REST API, which
provides a PUT method to create a handle or replace its records:

Fig. 17 - Handle API

Collaboration Project Final Report

the user. Values containing spaces must be typed in quotes, which could also be
used (but not required) for single-word values.
All the PITs forming the PTA object are mandatory except the date

which will be automatically set to the handle insertion date/time using the
" format, in accordance with the regular expression

constraint defined for this type.
The command relies on the RDA-PID Information Types API and, in particular, on

method provided to create new identifiers:

Fig. 16 - RDA-PIT API POST /pid method

The PIT REST Service exploits, in turn, the Handle HTTP JSON REST API, which
provides a PUT method to create a handle or replace its records:

Handle API PUT /api/handles/{handle} method

Page 23 of 48

the user. Values containing spaces must be typed in quotes, which could also be

date-time type,
nsertion date/time using the

" format, in accordance with the regular expression

PID Information Types API and, in particular, on

The PIT REST Service exploits, in turn, the Handle HTTP JSON REST API, which

RDA Europe 3 - Collaboration Project Final Report

The following command will create a new PTA handle record on the DKRZ
Handle Server:

The newly created PID can be resolved via the Handle global resolver
(http://hdl.handle.net) or, alternatively, via the Handle Service running at DKRZ
(http://handle.dkrz.de:8004

Fig. 19 - Resolution of a PID created by the pit_insert command

pit_lookup command

The pit_lookup command allows the user to retrieve all the handle values for the
specified PID.
The user only has to provide the identifier of the handle to be resolved:

pit_lookup PID=identifier

The command relies on the
return all or some properties of an identifier:

Fig. 20 - RDA

The include_property_names

the identifier of each PIT forming
extracted from the Handle Server is enriched by replacing the PIT identifiers
with their own corresponding names.
The PIT Service interacts with both Handle Server and Data Type Registry.
In the former case, it exploits the
by the Handle REST API to resolve the handle record:

Collaboration Project Final Report

The following command will create a new PTA handle record on the DKRZ

Fig. 18 - pit_insert example

The newly created PID can be resolved via the Handle global resolver
) or, alternatively, via the Handle Service running at DKRZ

http://handle.dkrz.de:8004):

Resolution of a PID created by the pit_insert command

command allows the user to retrieve all the handle values for the

The user only has to provide the identifier of the handle to be resolved:

PID=identifier

The command relies on the resolvePID method provided by the PIT API to
return all or some properties of an identifier:

RDA-PIT API GET /pid/{prefix}/{suffix} method

include_property_names query parameter is set to true in order to resolve
the identifier of each PIT forming the handle record: in this way, the object
extracted from the Handle Server is enriched by replacing the PIT identifiers
with their own corresponding names.
The PIT Service interacts with both Handle Server and Data Type Registry.
In the former case, it exploits the GET /api/handles/{handle} method provided
by the Handle REST API to resolve the handle record:

Page 24 of 48

The following command will create a new PTA handle record on the DKRZ

The newly created PID can be resolved via the Handle global resolver
) or, alternatively, via the Handle Service running at DKRZ

Resolution of a PID created by the pit_insert command

command allows the user to retrieve all the handle values for the

The user only has to provide the identifier of the handle to be resolved:

method provided by the PIT API to

query parameter is set to true in order to resolve
the handle record: in this way, the object

extracted from the Handle Server is enriched by replacing the PIT identifiers

The PIT Service interacts with both Handle Server and Data Type Registry.
method provided

RDA Europe 3 - Collaboration Project Final Report

Fig. 21 - Handle API

Then, it uses the GET /objects/<id>

a PIT identifier. After extracting the property description for a given PIT, the PIT
Service replaces its identifier with the corresponding name, as stated above.

Fig. 22

The following command retrieves all
record created by the previous pit_insert operation:

Collaboration Project Final Report

Handle API GET /api/handles/{handle} method

GET /objects/<id> method provided by the DTR API
a PIT identifier. After extracting the property description for a given PIT, the PIT
Service replaces its identifier with the corresponding name, as stated above.

Fig. 22 - DTR API GET /objects/<id> method

The following command retrieves all the information related to the handle
record created by the previous pit_insert operation:

Fig. 23 - pit_lookup example

Page 25 of 48

method provided by the DTR API to resolve
a PIT identifier. After extracting the property description for a given PIT, the PIT
Service replaces its identifier with the corresponding name, as stated above.

the information related to the handle

RDA Europe 3 - Collaboration Project Final Report

pit_search command

The pit_search command allows the user to search for different handles by some
criteria.
The user has to provide semicolon separated key

pit_search PIT_name_1=PIT_value_1;...;PIT_name_k=PIT_value_k

wherePIT_name_i stands for the PID Information Type name and PIT_value_i is
the type specific value the user is looking for. As for th
containing spaces must be typed in quotes.
Both the RDA-PIT API and the Handle API only allow to retrieve a single handle
by its persistent identifier, but they provide no methods to perform reverse look
up operations.
Therefore, the pit_search command has been implemented as follows.
The PIT API has been extended by adding a new method,
which exploits the GET /api/handles?prefix={prefix}

Handle API to list all handles under the specified p

Fig. 24 - Handle API

For each PID in the extracted list, a look
the handle values and apply the search filter provided by the user.
Once all handles have been process
are retained and shown on the terminal.
The following example describes a search operation with a filter on the
creatorNameand title PITs.
Suppose we've got four PTA handle objects related to two different
and created by two different users: two handles created by "Fabrizio Antonio"
for "Workflow #1", one handle created by "Fabrizio Antonio" for "Workflow #2"
and one handle created by "Mario Rossi" for "Workflow #1".

Collaboration Project Final Report

The pit_search command allows the user to search for different handles by some

provide semicolon separated key-value pairs in the form of

PIT_name_1=PIT_value_1;...;PIT_name_k=PIT_value_k

wherePIT_name_i stands for the PID Information Type name and PIT_value_i is
the type specific value the user is looking for. As for the insert command, values
containing spaces must be typed in quotes.

PIT API and the Handle API only allow to retrieve a single handle
by its persistent identifier, but they provide no methods to perform reverse look

the pit_search command has been implemented as follows.
The PIT API has been extended by adding a new method, GET /all/{prefix}

GET /api/handles?prefix={prefix} method provided by the
Handle API to list all handles under the specified prefix.

Handle API GET /api/handles/?prefix={prefix} method

For each PID in the extracted list, a look-up operation is performed to retrieve
the handle values and apply the search filter provided by the user.
Once all handles have been processed, only the ones that meet the search criteria
are retained and shown on the terminal.
The following example describes a search operation with a filter on the

PITs.
Suppose we've got four PTA handle objects related to two different
and created by two different users: two handles created by "Fabrizio Antonio"
for "Workflow #1", one handle created by "Fabrizio Antonio" for "Workflow #2"
and one handle created by "Mario Rossi" for "Workflow #1".

Page 26 of 48

The pit_search command allows the user to search for different handles by some

value pairs in the form of

PIT_name_1=PIT_value_1;...;PIT_name_k=PIT_value_k

wherePIT_name_i stands for the PID Information Type name and PIT_value_i is
e insert command, values

PIT API and the Handle API only allow to retrieve a single handle
by its persistent identifier, but they provide no methods to perform reverse look-

the pit_search command has been implemented as follows.
GET /all/{prefix},

method provided by the

method

up operation is performed to retrieve

ed, only the ones that meet the search criteria

The following example describes a search operation with a filter on the

Suppose we've got four PTA handle objects related to two different experiments
and created by two different users: two handles created by "Fabrizio Antonio"
for "Workflow #1", one handle created by "Fabrizio Antonio" for "Workflow #2"

RDA Europe 3 - Collaboration Project Final Report

Fig. 25 - Example of PTA digital objects stored on the DKRZ Handle Server

Suppose we're interested in the experiments related to "Workflow #1" run by
"Fabrizio Antonio". Figure
resulting output.

Fig. 26

If we wanted to extract information about the experiment "Workflow #1" run by
any user, we should remove the filter on the "creatorName" PIT, as shown in
Figure 27.

Fig. 27

Collaboration Project Final Report

of PTA digital objects stored on the DKRZ Handle Server

Suppose we're interested in the experiments related to "Workflow #1" run by
"Fabrizio Antonio". Figure 26 shows the corresponding command and the

Fig. 26 - pit_search example with multiple filters

If we wanted to extract information about the experiment "Workflow #1" run by
any user, we should remove the filter on the "creatorName" PIT, as shown in

Fig. 27 - pit_search example with single filter

Page 27 of 48

of PTA digital objects stored on the DKRZ Handle Server

Suppose we're interested in the experiments related to "Workflow #1" run by
shows the corresponding command and the

If we wanted to extract information about the experiment "Workflow #1" run by
any user, we should remove the filter on the "creatorName" PIT, as shown in

RDA Europe 3 - Collaboration Project Final Report

Module 4: PTA Use case

This section describes a typical use scenario related to the PTA experiment.
As stated in the "UML Diagrams" paragraph, two types of user can be identified:

● a "producer" (user P) runs the experiment and publishes it on the Handle
Server, storing one or more PTA objects to share with the other users;

● a "consumer" (user C) can search for objects by some criteria, retrieve
detailed information for a particular object, perform an in
on the experiment and its corresponding output data.

Producer user

The user P submits the PTA experiment by means of the Ophidia Terminal,
providing all the required input arguments:

Fig. 28 - Submission of the Precipitation Trend Analysis workflow

During the workflow execution, P can check its current
command and specifying the
snapshot of the status of the workflow: the green, yellow, grey and orange disks
represent completed, skipped, unscheduled or unselected, and running tasks,
respectively.

Collaboration Project Final Report

e case

This section describes a typical use scenario related to the PTA experiment.
As stated in the "UML Diagrams" paragraph, two types of user can be identified:

a "producer" (user P) runs the experiment and publishes it on the Handle
one or more PTA objects to share with the other users;

a "consumer" (user C) can search for objects by some criteria, retrieve
detailed information for a particular object, perform an in-
on the experiment and its corresponding output data.

The user P submits the PTA experiment by means of the Ophidia Terminal,
providing all the required input arguments:

Submission of the Precipitation Trend Analysis workflow

During the workflow execution, P can check its current status by calling the
command and specifying the Workflow ID. Figure 29 shows an intermediate
snapshot of the status of the workflow: the green, yellow, grey and orange disks
represent completed, skipped, unscheduled or unselected, and running tasks,

Page 28 of 48

This section describes a typical use scenario related to the PTA experiment.
As stated in the "UML Diagrams" paragraph, two types of user can be identified:

a "producer" (user P) runs the experiment and publishes it on the Handle
one or more PTA objects to share with the other users;

a "consumer" (user C) can search for objects by some criteria, retrieve
-depth analysis

The user P submits the PTA experiment by means of the Ophidia Terminal,

Submission of the Precipitation Trend Analysis workflow

status by calling the view

. Figure 29 shows an intermediate
snapshot of the status of the workflow: the green, yellow, grey and orange disks
represent completed, skipped, unscheduled or unselected, and running tasks,

RDA Europe 3 - Collaboration Project Final Report

Fig. 29 - Intermediate snapshot of the status of the workflow

Collaboration Project Final Report

Intermediate snapshot of the status of the workflow

Page 29 of 48

Intermediate snapshot of the status of the workflow

RDA Europe 3 - Collaboration Project Final Report

Page 30 of 48

Once the execution ends, the user can publish the experiment.
First, P can obtain additional details, such as the workflow task list, by exploiting
the view command again:

Fig. 30 - Output of the view command

Then, P can obtain the output of each task by referring to the task by its Marker

ID.
The PTA experiment consists of a number (two in the example above) of sub-
workflows executed in parallel, followed by a final workflow performing an
ensemble analysis. So, in addition to the output datacubes resulting from the
ensemble analysis, P could also publish the intermediate results coming from the
two single analysis, in order to allow a comprehensive analysis of the
experiment.
Figures 31 and 32 show the EXPORT tasks, extracted from the workflow task list
provided by the view command, useful to retrieve the PID of the corresponding
datacubes.

Fig. 31 - Portion of the view command output related to the single analysis EXPORT tasks

Fig. 32 - Portion of the view command output

related to the ensemble analysis EXPORT tasks

RDA Europe 3 - Collaboration Project Final Report

For each task, P can use the
information:

Fig. 33 - Commands to obtain the output of a task

Finally, for each datacube to be published, P can create and store a PTA object on
the Handle Server by using the

Fig. 34 - pit_insert commands for publishing the PTA experiment

The three resulting handles are shown in Figure 35.

Collaboration Project Final Report

For each task, P can use the Workflow ID - Marker ID pair to obtain the desired

Commands to obtain the output of a task by referring to it by its Marker ID

Finally, for each datacube to be published, P can create and store a PTA object on
the Handle Server by using the pit_insert command:

pit_insert commands for publishing the PTA experiment

resulting handles are shown in Figure 35.

Page 31 of 48

pair to obtain the desired

by referring to it by its Marker ID

Finally, for each datacube to be published, P can create and store a PTA object on

pit_insert commands for publishing the PTA experiment

RDA Europe 3 - Collaboration Project Final Report

Consumer user

The user C, who is interested in studying and analyzing the PTA experiment, will
perform the following actions:

A. search of PTA objects related to a PTA experiment run by
The user C will execute the
title (the name of the workflow) and the
workflow) PITs:

With regard to the “Producer user” scenario
command will output the PIDs of the three handles previously created by
the user P.

B. look-up of each retrieved PID to extract all the data and metadata values

stored in the corresponding typed digital object:

C. send an email to the workflow owner for the latter to share the session,
thus gaining access to all workflow information (workspace, data, results,
exported objects). The email address of the owner is given by the
corresponding PIT in the extr

Collaboration Project Final Report

Fig. 35 - PTA objects

The user C, who is interested in studying and analyzing the PTA experiment, will
perform the following actions:

search of PTA objects related to a PTA experiment run by a specific user.
The user C will execute the pit_search command providing a filter on the

(the name of the workflow) and the creatorName(the owner of the

Fig. 36 - Search of PTA objects

With regard to the “Producer user” scenario described above, the
command will output the PIDs of the three handles previously created by

up of each retrieved PID to extract all the data and metadata values
stored in the corresponding typed digital object:

Figu. 37 - Look-up of PTA objects

send an email to the workflow owner for the latter to share the session,
thus gaining access to all workflow information (workspace, data, results,
exported objects). The email address of the owner is given by the
corresponding PIT in the extracted objects, while the session identifier is

Page 32 of 48

The user C, who is interested in studying and analyzing the PTA experiment, will

a specific user.
command providing a filter on the

(the owner of the

described above, the
command will output the PIDs of the three handles previously created by

up of each retrieved PID to extract all the data and metadata values

send an email to the workflow owner for the latter to share the session,
thus gaining access to all workflow information (workspace, data, results,
exported objects). The email address of the owner is given by the

acted objects, while the session identifier is

RDA Europe 3 - Collaboration Project Final Report

part of the value of the
can finely grant access privileges by using the OPH_MANAGE_SESSION
Ophidia operator.

At this point, the user C will be able to perform
the user can:

● get the provenance of an output datacube, that is the hierarchy of all
datacubes used to generate it and of those derived from it.
As stated above, in the specific case of the PTA experiment, the workflow
consists of two parallel single analyses followed by an ensemble analysis,
which includes a data re
between the two phases. The user can retrace the full provenance of a
workflow output datacube (resulting f
of the partial provenances obtained by executing the OPH_CUBEIO
Ophidia operator on multiple datacubes, among those published for the
experiment. The identifiers of the intermediate and final datacubes are
stored as values for the

Fig. 38 - Provenance of a PTA experiment output datacube

● download the original (parameterized) workflow version, using the URL

stored in the corresponding
● analyze the workflow instance (submitted version with input arguments

substitution) run by the owner of the workflow, using the
general PIT;

● view the workflow status, progress and task list using the
and the workflow ID;

● rerun the experiment by submitting the workflow with different inputs;
● export data of a datacube into multiple NetCDF files using the

OPH_EXPORTNC Ophidia operator;
● access and analyze the intermediate and final results using the datacubes

identifiers specified in t

Collaboration Project Final Report

part of the value of the identifier-general PIT. The owner of the session
can finely grant access privileges by using the OPH_MANAGE_SESSION
Ophidia operator.

At this point, the user C will be able to perform any kind of analysis. Specifically,

get the provenance of an output datacube, that is the hierarchy of all
datacubes used to generate it and of those derived from it.
As stated above, in the specific case of the PTA experiment, the workflow
consists of two parallel single analyses followed by an ensemble analysis,
which includes a data re-gridding step. This requires a second INPUT task
between the two phases. The user can retrace the full provenance of a
workflow output datacube (resulting from the ensemble analysis) as sum
of the partial provenances obtained by executing the OPH_CUBEIO
Ophidia operator on multiple datacubes, among those published for the
experiment. The identifiers of the intermediate and final datacubes are

for the location PIT, as shown in Figure 37.

Provenance of a PTA experiment output datacube

download the original (parameterized) workflow version, using the URL
stored in the corresponding URL PIT;
analyze the workflow instance (submitted version with input arguments
substitution) run by the owner of the workflow, using the

view the workflow status, progress and task list using the view

and the workflow ID;
experiment by submitting the workflow with different inputs;

export data of a datacube into multiple NetCDF files using the
OPH_EXPORTNC Ophidia operator;
access and analyze the intermediate and final results using the datacubes
identifiers specified in the location PIT of each PTA objects.

Page 33 of 48

PIT. The owner of the session
can finely grant access privileges by using the OPH_MANAGE_SESSION

any kind of analysis. Specifically,

get the provenance of an output datacube, that is the hierarchy of all

As stated above, in the specific case of the PTA experiment, the workflow
consists of two parallel single analyses followed by an ensemble analysis,

gridding step. This requires a second INPUT task
between the two phases. The user can retrace the full provenance of a

rom the ensemble analysis) as sum
of the partial provenances obtained by executing the OPH_CUBEIO
Ophidia operator on multiple datacubes, among those published for the
experiment. The identifiers of the intermediate and final datacubes are

download the original (parameterized) workflow version, using the URL

analyze the workflow instance (submitted version with input arguments
substitution) run by the owner of the workflow, using the identifier-

view command

experiment by submitting the workflow with different inputs;
export data of a datacube into multiple NetCDF files using the

access and analyze the intermediate and final results using the datacubes

RDA Europe 3 - Collaboration Project Final Report

Page 34 of 48

For example, the user can view metadata information about a datacube
and its dimensions using the OPH_CUBESCHEMA operator:

Fig. 39 - OPH_CUBESCHEMA example

RDA Europe 3 - Collaboration Project Final Report

Page 35 of 48

Dissemination Activities / Publications

This work has also been mentioned during the INDIGO Review which took place
on Nov 16 and 17 in Brussels.

Event Date Publication/Dissemination

activity
1 ESGF2017 Conference 4-8/12/2017 Presentation
2 AGU2017 Conference 11/12/2017 Presentation
3 CF2017 15/5/2017 Presentation
4 HPC Summit 2017 16/5/2017 Presentation
5 RDA School 25/5/2017 Presentation
6 Invited lecture at BSC 25/5/2017 Presentation
7 EGI-INDIGO Summit 11/5/2017 Presentation
8 EGU2017 25/04/2017 Presentation

Summary & Conclusions

The report provides an introduction to the design and implementation of the
Ophidia support for RDA-PIT. As discussed in this work, the big data analytics
framework has been extended to include the PID Handle Service client API. In a
multi-user scenario, these new features would enable different users to share
their own experiments.
In that regard, a multi-model climate analytics experiment case study
implemented in the context of the EU INDIGO-DataCloud project has been
provided. A user can run the experiment and share it with other users by storing
several typed digital objects on the identifier system; on the other hand, another
user could search and access these objects in order to analyze the related data
and metadata.
We aim to improve the current set of PIT-based commands in future work, by
adding new functionalities, such as replacing or deleting an existing object, and
we also plan to evaluate and, if needed, optimize system performance.

RDA Europe 3 - Collaboration Project Final Report

Page 36 of 48

Annex I - PTA workflow

{
 "name": "precip_trend_analysis",
 "author": "CMCC Foundation",
 "abstract": "Workflow for the analysis of precipit ation trends
related to different scenarios. ${1} is ncores; ${2 } is the list of
models (e.g. CMCC-CM|CMCC-CMS); ${3} is the scenari o (e.g. rcp45 or
rcp85); ${4} is the frequency (e.g. day or mon); ${ 5} is the
percentile (e.g. 0.9); ${6} is the past time subset (e.g. 1976_2006);
${7} is the future time subset (e.g. 2071_2101); ${ 8} is the
geographic subset (e.g. 30:45|0:40); ${9} is the gr id of output map
using the format r<lon>x<lat> (e.g. r360x180), i.e. a global regular
lon/lat grid; ${10} import type (optional), set to '1' in case only
subsetting data have to be imported (default); ${11 } I/O server type
(optional).",
 "exec_mode": "async",
 "cwd": "/",
 "ncores": "${1}",
 "on_exit": "oph_delete",
 "host_partition": "test",
 "tasks": [
 {
 "name": "Create Work Container",
 "operator": "oph_createcontainer",
 "arguments": [
 "container=work",
 "dim=lat|lon|time",
 "dim_type=double|double|double",
 "hierarchy=oph_base|oph_base|oph_time",
 "compressed=no",
 "ncores=1",
 "base_time=1976-01-01",
 "calendar=standard",
 "units=d"
],
 "on_error": "skip"
 },
 {
 "name": "Create Historical Container",
 "operator": "oph_createcontainer",
 "arguments": [
 "container=historical",
 "dim=lat|lon|time",
 "dim_type=double|double|double",
 "hierarchy=oph_base|oph_base|oph_time",
 "compressed=no",
 "ncores=1",
 "base_time=1976-01-01",
 "calendar=standard",
 "units=d"
],
 "on_error": "skip"
 },
 {
 "name": "Create Scenario Container",
 "operator": "oph_createcontainer",
 "arguments": [
 "container=scenario",
 "dim=lat|lon|time",
 "dim_type=double|double|double",

RDA Europe 3 - Collaboration Project Final Report

Page 37 of 48

 "hierarchy=oph_base|oph_base|oph_time",
 "compressed=no",
 "ncores=1",
 "base_time=2070-01-01",
 "calendar=standard",
 "units=d"
],
 "on_error": "skip"
 },
 {
 "name": "loop_model",
 "operator": "oph_for",
 "arguments": [
 "key=model",
 "values=${2}",
 "parallel=yes"
],
 "dependencies": [
 { "task": "Create Work Container"},
 { "task": "Create Historical Container"},
 { "task": "Create Scenario Container"}
]
 },
 {
 "name": "Import Type Selection Historical",
 "operator": "oph_if",
 "arguments": ["condition=${10}"],
 "dependencies": [
 { "task": "loop_model" }
]
 },
 {
 "name": "Import Historical",
 "operator": "oph_importnc",
 "arguments": [
 "container=historical",
 "exp_dim=lat|lon",
 "imp_dim=time",
 "measure=pr",
 "src_path=/INDIGO/precip_trend_data/@{model}/histo rical/${4}/pr
${4}@{model}_historical_r1i1p1.nc",
 "compressed=no",
 "exp_concept_level=c|c",
 "filesystem=local",
 "imp_concept_level=${4}",
 "ndb=1",
 "ndbms=1",
 "nhost=1",
 "import_metadata=yes",
 "check_compliance=no",
 "units=d",
 "subset_dims=time|lat|lon",
 "subset_filter=${6}|${8}",
 "subset_type=coord",
 "offset=0|2|2",
 "ioserver=${11}"
],
 "dependencies": [
 { "task": "Import Type Selection Historical" }
]
 },

RDA Europe 3 - Collaboration Project Final Report

Page 38 of 48

 {
 "name": "Import without subsetting Historical",
 "operator": "oph_else",
 "arguments": [],
 "dependencies": [
 { "task": "Import Type Selection Historical" }
]
 },
 {
 "name": "Import Historical Only",
 "operator": "oph_importnc",
 "arguments": [
 "container=historical",
 "exp_dim=lat|lon",
 "imp_dim=time",
 "measure=pr",
 "src_path=/INDIGO/precip_trend_data/@{model}/histo rical/${4}/pr
${4}@{model}_historical_r1i1p1.nc",
 "compressed=no",
 "exp_concept_level=c|c",
 "filesystem=local",
 "imp_concept_level=${4}",
 "ndb=1",
 "ndbms=1",
 "nhost=1",
 "import_metadata=yes",
 "check_compliance=no",
 "units=d",
 "ioserver=${11}"
],
 "dependencies": [
 { "task": "Import without subsetting Historical" }
]
 },
 {
 "name": "Subset Zone Historical",
 "operator": "oph_subset2",
 "arguments": [
 "subset_dims=time|lat|lon",
 "subset_filter=${6}|${8}",
 "offset=0|2|2"
],
 "dependencies": [
 { "task": "Import Historical Only", "type": "singl e" }
]
 },
 {
 "name": "End Import Type Selection Historical",
 "operator": "oph_endif",
 "arguments": [],
 "dependencies": [
 { "task": "Import Historical", "type": "single" },
 { "task": "Subset Zone Historical", "type": "singl e" }
]
 },
 {
 "name": "Subset JJA Historical",
 "operator": "oph_subset2",
 "arguments": [
 "subset_dims=time",

RDA Europe 3 - Collaboration Project Final Report

Page 39 of 48

 "subset_filter=1976-06_1976-09,1977-06_1977-09,197 8-06_1978-
09,1979-06_1979-09,1980-06_1980-09,1981-06_1981-09, 1982-06_1982-
09,1983-06_1983-09,1984-06_1984-09,1985-06_1985-09, 1986-06_1986-
09,1987-06_1987-09,1988-06_1988-09,1989-06_1989-09, 1990-06_1990-
09,1991-06_1991-09,1992-06_1992-09,1993-06_1993-09, 1994-06_1994-
09,1995-06_1995-09,1996-06_1996-09,1997-06_1997-09, 1998-06_1998-
09,1999-06_1999-09,2000-06_2000-09,2001-06_2001-09, 2002-06_2002-
09,2003-06_2003-09,2004-06_2004-09,2005-06_2005-09"
],
 "dependencies": [
 { "task": "End Import Type Selection Historical", "type":
"single" }
]
 },
 {
 "name": "90th percentile JJA Historical",
 "operator": "oph_reduce2",
 "arguments": [
 "operation=quantile",
 "dim=time",
 "concept_level=y",
 "order=${5}"
],
 "dependencies": [
 { "task": "Subset JJA Historical", "type": "single " }
]
 },
 {
 "name": "Linear regression Historical",
 "operator": "oph_apply",
 "arguments": [
 "query=oph_gsl_fit_linear_coeff(measure)",
 "measure_type=auto"
],
 "dependencies": [
 { "task": "90th percentile JJA Historical", "type" : "single" }
]
 },
 {
 "name": "Import Type Selection Scenario",
 "operator": "oph_if",
 "arguments": ["condition=${10}"],
 "dependencies": [
 { "task": "loop_model" }
]
 },
 {
 "name": "Import Scenario",
 "operator": "oph_importnc",
 "arguments": [
 "container=scenario",
 "exp_dim=lat|lon",
 "imp_dim=time",
 "measure=pr",
 "src_path=/INDIGO/precip_trend_data/@{model}/${3}/ ${4}/pr_${4}_
@{model}_${3}_r1i1p1.nc",
 "compressed=no",
 "exp_concept_level=c|c",
 "filesystem=local",
 "imp_concept_level=${4}",
 "ndb=1",

RDA Europe 3 - Collaboration Project Final Report

Page 40 of 48

 "ndbms=1",
 "nhost=1",
 "import_metadata=yes",
 "check_compliance=no",
 "units=d",
 "subset_dims=time|lat|lon",
 "subset_filter=${7}|${8}",
 "subset_type=coord",
 "offset=0|2|2",
 "ioserver=${11}"
],
 "dependencies": [
 { "task": "Import Type Selection Scenario" }
]
 },
 {

 "name": "Import without subsetting Scenario",
 "operator": "oph_else",
 "arguments": [],
 "dependencies": [
 { "task": "Import Type Selection Scenario" }
]
 },
 {
 "name": "Import Scenario Only",
 "operator": "oph_importnc",
 "arguments": [
 "container=scenario",
 "exp_dim=lat|lon",
 "imp_dim=time",
 "measure=pr",
 "src_path=/INDIGO/precip_trend_data/@{model}/${3}/ ${4}/pr_${4}_
@{model}_${3}_r1i1p1.nc",
 "compressed=no",
 "exp_concept_level=c|c",
 "filesystem=local",
 "imp_concept_level=${4}",
 "ndb=1",
 "ndbms=1",
 "nhost=1",
 "import_metadata=yes",
 "check_compliance=no",
 "units=d",
 "ioserver=${11}"
],
 "dependencies": [
 { "task": "Import without subsetting Scenario" }
]
 },
 {
 "name": "Subset Zone Scenario",
 "operator": "oph_subset2",
 "arguments": [
 "subset_dims=time|lat|lon",
 "subset_filter=${7}|${8}",
 "offset=0|2|2"
],
 "dependencies": [
 { "task": "Import Scenario Only", "type": "single" }
]

RDA Europe 3 - Collaboration Project Final Report

Page 41 of 48

 },
 {
 "name": "End Import Type Selection Scenario",
 "operator": "oph_endif",
 "arguments": [],
 "dependencies": [
 { "task": "Import Scenario", "type": "single" },
 { "task": "Subset Zone Scenario", "type": "single" }
]
 },
 {
 "name": "Subset JJA Scenario",
 "operator": "oph_subset2",
 "arguments": [
 "subset_dims=time",
 "subset_filter=2071-06_2071-09,2072-06_2072-09,207 3-06_2073-
09,2074-06_2074-09,2075-06_2075-09,2076-06_2076-09, 2077-06_2077-
09,2078-06_2078-09,2079-06_2079-09,2080-06_2080-09, 2081-06_2081-
09,2082-06_2082-09,2083-06_2083-09,2084-06_2084-09, 2085-06_2085-
09,2086-06_2086-09,2087-06_2087-09,2088-06_2088-09, 2089-06_2089-
09,2090-06_2090-09,2091-06_2091-09,2092-06_2092-09, 2093-06_2093-
09,2094-06_2094-09,2095-06_2095-09,2096-06_2096-09, 2097-06_2097-
09,2098-06_2098-09,2099-06_2099-09,2100-06_2100-09"
],
 "dependencies": [
 { "task": "End Import Type Selection Scenario", "t ype":
"single" }
]
 },
 {
 "name": "90th percentile JJA Scenario",
 "operator": "oph_reduce2",
 "arguments": [
 "operation=quantile",
 "dim=time",
 "concept_level=y",
 "order=${5}"
],
 "dependencies": [
 { "task": "Subset JJA Scenario", "type": "single" }
]
 },
 {
 "name": "Linear regression Scenario",
 "operator": "oph_apply",
 "arguments": [
 "query=oph_gsl_fit_linear_coeff(measure)",
 "measure_type=auto"
],
 "dependencies": [
 { "task": "90th percentile JJA Scenario", "type": "single" }
]
 },
 {
 "name": "Trend differences",
 "operator": "oph_intercube",
 "arguments": [
 "operation=sub",
 "measure=precip_trend",
 "container=work"
],

RDA Europe 3 - Collaboration Project Final Report

Page 42 of 48

 "dependencies": [
 { "task": "Create Work Container" },
 { "task": "Linear regression Scenario", "argument" : "cube",
"type": "single" },
 { "task": "Linear regression Historical", "argumen t": "cube2",
"type": "single" }
]
 },
 {
 "name": "Unit change",
 "operator": "oph_apply",
 "arguments": [
 "query=oph_mul_scalar(measure,86400)",
 "measure_type=auto"
],
 "dependencies": [
 { "task": "Trend differences", "type": "single" }
]
 },
 {
 "name": "Metadata update",
 "operator": "oph_metadata",
 "arguments": [
 "mode=insert",
 "metadata_key=standard_name|long_name|units",
 "metadata_value=precipitation_trend|PrecipitationT rend|mm d-1
y-1",
 "variable=precip_trend"
],
 "dependencies": [
 { "task": "Unit change", "type": "single" }
]
 },
 {
 "name": "Export",
 "operator": "oph_exportnc2",
 "arguments": [
 "force=yes",
 "output_name=precip_trend_analysis_@{model}",
 "output_path=/INDIGO/precip_trend_input/@{OPH_SESS ION_CODE}/@{O
PH_WORKFLOW_ID}"
],
 "dependencies": [
 { "task": "Metadata update", "type": "single" }
]
 },
 {
 "name": "Create map",
 "operator": "oph_script",
 "arguments": [
 "script=precip_trend_analysis",
 "args=precip_trend_analysis_@{model}.nc ${8} ${9}"
],
 "dependencies": [
 { "task": "Export" }
]
 },
 {
 "name": "End loop_model",
 "operator": "oph_endfor",
 "arguments": [],

RDA Europe 3 - Collaboration Project Final Report

Page 43 of 48

 "dependencies": [
 { "task": "Create map" }
]
 },
 {
 "name": "Ensemble Delete Work Container",
 "operator": "oph_deletecontainer",
 "arguments": [
 "container=ensemble",
 "hidden=no",
 "delete_type=physical"
],
 "dependencies": [
 { "task": "End loop_model"}
],
 "on_error": "skip"
 },
 {
 "name": "Ensemble Create Work Container",
 "operator": "oph_createcontainer",
 "arguments": [
 "container=ensemble",
 "dim=lat|lon",
 "dim_type=double|double",
 "hierarchy=oph_base|oph_base",
 "compressed=no",
 "ncores=1"
],
 "dependencies": [
 { "task": "Ensemble Delete Work Container" }
],
 "on_error": "skip"
 },
 {
 "name": "loop",
 "operator": "oph_for",
 "arguments": [
 "key=model",
 "values=${2}",
 "parallel=yes"
],
 "dependencies": [
 {
 "task": "Ensemble Create Work Container",
 "type": "single"
 }
]
 },
 {
 "name": "Ensemble import",
 "operator": "oph_importnc",
 "arguments": [
 "cwd=/",
 "measure=precip_trend",
 "src_path=/INDIGO/precip_trend_input/@{OPH_SESSION _CODE}/@{OPH_
WORKFLOW_ID}/precip_trend_analysis_@{model}.nc",
 "import_metadata=yes",
 "nfrag=1",
 "container=ensemble",
 "grid=map",
 "ioserver=${11}"

RDA Europe 3 - Collaboration Project Final Report

Page 44 of 48

],
 "dependencies": [
 {
 "task": "loop",
 "type": "single"
 }
]
 },
 {
 "name": "End loop",
 "operator": "oph_endfor",
 "arguments": [],
 "dependencies": [
 {
 "task": "Ensemble import",
 "type": "all"
 }
]
 },
 {
 "name": "Ensemble merging",
 "operator": "oph_mergecubes2",
 "arguments": ["dim=new_dim"],
 "dependencies": [
 {
 "task": "End loop",
 "type": "all",
 "argument": "cubes"
 }
]
 },
 {
 "name": "loop_reduce",
 "operator": "oph_for",
 "arguments": ["key=index", "values=avg|min|max|va r|std",
"parallel=yes"],
 "dependencies": [{ "task":"Ensemble merging", "ty pe": "single"
}]
 },
 {
 "name": "Ensemble reducing",
 "operator": "oph_reduce2",
 "arguments": [
 "operation=@{index}",
 "dim=new_dim"
],
 "dependencies": [
 {
 "task": "loop_reduce",
 "type": "single"
 }
]
 },
 {
 "name": "Ensemble export",
 "operator": "oph_exportnc2",
 "arguments": [
 "force=yes",
 "misc=yes",
 "output_name=@{index}"
],

RDA Europe 3 - Collaboration Project Final Report

Page 45 of 48

 "dependencies": [
 {
 "task": "Ensemble reducing",
 "type": "single"
 }
]
 },
 {
 "name": "Ensemble Post",
 "operator": "oph_script",
 "arguments": [
 "script=precip_trend_analysis_ensemble",
 "args=@{index}"
],
 "dependencies": [
 {
 "task": "Ensemble export"
 }
]
 },
 {
 "name": "End loop_reduce",
 "operator": "oph_endfor",
 "arguments": [],
 "dependencies": [{ "task":"Ensemble Post" }]
 },
 {
 "name": "Ensemble Delete all cubes",
 "operator": "oph_delete",
 "arguments": [
 "cube=[container=ensemble]"
],
 "dependencies": [
 {
 "task": "End loop_reduce"
 }
],
 "on_error": "skip"
 },
 {
 "name": "Ensemble Delete container",
 "operator": "oph_deletecontainer",
 "arguments": [
 "container=ensemble",
 "hidden=no",
 "delete_type=physical"
],
 "dependencies": [
 {
 "task": "Ensemble Delete all cubes"
 }
],
 "on_error": "skip"
 }
]
}

RDA Europe 3 - Collaboration Project Final Report

Page 46 of 48

Annex II - PIT usage in theOphidia Terminal (user manual)

This section provides a short user manual on how to use the three Ophidia
Terminal extensions that have been implemented to include the RDA-PIT
support into the Ophidia big data analytics framework.

Oph-Terminal provides different environment variables and commands that can
be used to store recurring values and to perform “local” and “remote” operations.

The set of environment variables has been extended to meet the RDA-PIT
requirements. Specifically, three new variables allow the terminal to contact the
proper PIT Service and know the prefix of the Handle Server instance where the
typed digital objects will be stored.
Here is a description of the main environment variables:

● OPH_USER is the username required to access Ophidia;
● OPH_PASSWD is the password required to access Ophidia;
● OPH_SERVER_HOST is the address/DNS name of the host where the

Ophidia Server is running;
● OPH_SERVER_PORT is the port number of the Ophidia Server;
● PIT_SERVER_HOST is the address of the PIT REST Service;
● PIT_SERVER_PORT is the port of the PIT REST Service;
● PIT_HANDLE_SERVER_PREFIX is the prefix of the Handle Server

instance.
The new environment variables are highlighted in bold.

The program environment has also been extended with three new commands -
pit_insert, pit_search, pit_lookup - which enable a user to publish an
experiment and to analyze experiments shared by other users.

pit_insert

The pit_insert command allows users to create and store a PTA typed digital
object at the Handle Server side.
The command can be executed by means of a submission string with the
following syntax:

pit_insert PIT_name_1=PIT_value_1;...;PIT_name_N=PIT_value_N

The above string consists of key-value pairs containing the equal sign and
separated by semicolons. The values assigned to the parameters
PIT_name_1,...,PIT_name_N can include spaces and, in this case, they must be
typed in quotes. The names of these parameters refer to the names of the PITs
forming the PTA object defined in the module 2.
All the PITs are mandatory except the date-time type, which will be automatically
set to the handle insertion date/time.
The newly created handle record will have a randomly and uniquely generated
persistent identifier, which is the command output shown at the terminal.

pit_search

The pit_search command allows users to search for different PTA objects by
some criteria.

RDA Europe 3 - Collaboration Project Final Report

Page 47 of 48

The command can be executed by means of a submission string with the same
syntax as the pit_insert string:

pit_search PIT_name_1=PIT_value_1;...;PIT_name_K=PIT_value_K

The above string consists of key-value pairs representing the user search filter.
The command will show at the terminal the list of persistent identifiers related
to the typed objects matching the user criteria.

pit_lookup

The pit_lookup command allows users to retrieve all the PITs values for the
specified PTA object.
The user only has to provide the identifier of the handle to be resolved:

pit_lookupPID=identifier
The command will show at the terminal all the PITs forming the extracted object
and their own corresponding values.

RDA Europe 3 - Collaboration Project Final Report

Page 48 of 48

References

[1] - Ophidia. Online: http://ophidia.cmcc.it. Last accessed: 21/11/2017.
[2] - S. Fiore, A. D’Anca, C. Palazzo, I. T. Foster, D. N. Williams, and G.
Aloisio.Ophidia: Toward big data analytics for escience. In Proceedings of the
International Conference on Computational Science, ICCS 2013, Barcelona, Spain,
5-7 June, 2013, pages 2376–2385.
[3] - D. Elia, S. Fiore, A. D’Anca, C. Palazzo, I. Foster, D. N. Williams, and G. Aloisio.
An in-memory based framework for scientific data analytics. In Proceedings of
the ACM International Conference on Computing Frontiers (CF ’16), May 16-19,
2016, Como, Italy, pages 424-429.
[4] INDIGO-DataCloud.Online:https://www.indigo-datacloud.eu. Last accessed:
21/11/2017
[5] Davide Salomoni, Isabel Campos Plasencia, Luciano Gaido, Giacinto Donvito,
P. Fuhrman, Jordi Marco, A. Lopez-Garcia, Pablo Orviz,IgnacioBlanquer,
GermánMoltó, MarcinPlóciennik, Michal Owsiak, Michal Urbaniak, Marcus Hardt,
Andrea Ceccanti, B. Wegh, J. Gomes, Mário David, Cristina Aiftimiei, L. Dutka,
Sandro Fiore, Giovanni Aloisio, Roberto Barbera, Riccardo Bruno, Marco
Fargetta, Emidio Giorgio, S. Reynaud, L. Schwarz: INDIGO-Datacloud: foundations
and architectural description of a Platform as a Service oriented to scientific
computing. CoRR abs/1603.09536 (2016)
[6] S. Fiore, M. Płóciennik, C. Doutriaux, C. Palazzo, J. Boutte, T. Żok, D. Elia, M.
Owsiak, A. D’Anca, Z. Shaheen, R. Bruno, M Fargetta, M. Caballer, G. Moltó, I.
Blanquer, R. Barbera, M. David, G. Donvito, D. N. Williams, V. Anantharaj, D.
Salomoni, and G. Aloisio, “Distributed and cloud-based multi-model analytics
experiments on large volumes of climate change data in the Earth System Grid
Federation eco-system”, Workshop on "Big Data Challenges, Research, and
Technologies in the Earth and Planetary Sciences", IEEE Big Data Conference
2016, pp. 2911-2918, DOI: 10.1109/BigData.2016.7840941.
[7] - RDA-PID Information Types 0.1 API. Online: https://smw-
rda.esc.rzg.mpg.de/apidocs/
[8] - Handle HTTP JSON REST API. In Technical Manual Version 8.1 Preliminary
edition, CNRI, November 2015, pages 65-75.
[9] - U. Schwardmann.Automated Schema Extraction for PID Information
Types.Göttingen, 2016.

