Bibliography, version February 17 2022
[1] R. Kahn and R. Wilensky, “A framework for distributed digital object services,” Int J Digit Libr, vol. 6, no. 2, pp. 115–123, Apr. 2006, doi: 10.1007/s00799-005-0128-x.
[2] U. Schwardmann, “Automated schema extraction for PID information types,” in 2016 IEEE International Conference on Big Data (Big Data), Washington DC,USA, Dec. 2016, pp. 3036–3044. doi: 10.1109/BigData.2016.7840957.
[3] G. S. Peter Wittenburg, “Common Patterns in Revolutionary Infrastructures and Data,” 2018, doi: 10.23728/B2SHARE.4E8AC36C0DD343DA81FD9E83E72805A0.
[4] G. Berg-Cross, R. Ritz, and P. Wittenburg, “Data Foundation and Terminology Work Group Products,” 2015, doi: 10.15497/06825049-8CA4-40BD-BCAF-DE9F0EA2FADF.
[5] DONA Foundation, “Digital Object Interface Protocol Specification.” Nov. 12, 2018. [Online]. Available: https://www.dona.net/sites/default/files/2018-11/DOIPv2Spec_1.pdf
[6] U. Schwardmann, “Digital Objects – FAIR Digital Objects: Which Services Are Required?,” Data Science Journal, vol. 19, p. 15, Apr. 2020, doi: 10.5334/dsj-2020-015.
[7] L. Lannom, D. Koureas, and A. R. Hardisty, “FAIR Data and Services in Biodiversity Science and Geoscience,” Data Intelligence, vol. 2, no. 1–2, pp. 122–130, Jan. 2020, doi: 10.1162/dint_a_00034.
[8] Wittenburg, Peter et al., “FAIR Digital Object Demonstrators 2021,” Zenodo, Jan. 2022. doi: 10.5281/ZENODO.5872645.
[9] A. Pfeil, T. Jejkal, S. Chelbi, and R. Stotzka, “FAIR Digital Object Ecosystem Testbed,” presented at the 17th RDA Plenary Meeting, 2021. doi: 10.5445/IR/1000131613.
[10] GEDE, “FAIR Digital Objects - Collection of documents,” 2019. https://github.com/GEDE-RDA-Europe/GEDE/tree/master/FAIR%20Digital%20Objects (accessed Jun. 13, 2020).
[11] K. De Smedt, D. Koureas, and P. Wittenburg, “FAIR Digital Objects for Science: From Data Pieces to Actionable Knowledge Units,” Publications, vol. 8, no. 2, p. 21, Apr. 2020, doi: 10.3390/publications8020021.
[12] E. Schultes and P. Wittenburg, “FAIR Principles and Digital Objects: Accelerating Convergence on a Data Infrastructure,” in Data Analytics and Management in Data Intensive Domains, vol. 1003, Y. Manolopoulos and S. Stupnikov, Eds. Cham: Springer International Publishing, 2019, pp. 3–16. doi: 10.1007/978-3-030-23584-0_1.
[13] T. Weigel, U. Schwardmann, J. Klump, S. Bendoukha, and R. Quick, “Making Data and Workflows Findable for Machines,” Data Intelligence, vol. 2, no. 1–2, pp. 40–46, Jan. 2020, doi: 10.1162/dint_a_00026.
[14] M. Stocker et al., “Persistent Identification of Instruments,” Data Science Journal, vol. 19, p. 18, May 2020, doi: 10.5334/dsj-2020-018.
[15] European Commission. Directorate General for Research and Innovation. and EOSC Executive Board., PID architecture for the EOSC: report from the EOSC Executive Board Working Group (WG) Architecture PID Task Force (TF). LU: Publications Office, 2020. Accessed: Feb. 18, 2021. [Online]. Available: https://data.europa.eu/doi/10.2777/525581
[16] T. Jejkal, S. Chelbi, and A. Pfeil, “RDA Collection Registry Adoption,” presented at the 17th RDA Plenary Meeting, 2021. doi: 10.5445/IR/1000131494.
[17] “Turning FAIR into reality: Final report and action plan from the European Commission expert group on FAIR data.” European Commission: Directorate-General for Research and Innovation, 2018. [Online]. Available: https://op.europa.eu/en/publication-detail/-/publication/7769a148-f1f6-11e8-9982-01aa75ed71a1/language-en
- 1254 reads