FAIR Data Maturity Model: specification and guidelines

    You are here

08
Jun
2020

FAIR Data Maturity Model: specification and guidelines

By Marieke Willems


FAIR Data Maturity Model WG

Group co-chairs: Edit HerczogKeith Russell, Shelley Stall

Recommendation title:  FAIR Data Maturity Model: specification and guidelines

Impact: This document describes a maturity model for FAIR assessment with assessment indicators, priorities and evaluation methods. This is useful for the normalisation of assessment approaches to enable comparison of their results.

Authors: FAIR Data Maturity Model Working Group

DOI: 10.15497/RDA0050

Citation:  RDA FAIR Data Maturity Model Working Group (2020). FAIR Data Maturity Model: specification and guidelines. Research Data Alliance. DOI: 10.15497/RDA00050

Note: Supporting output Results of an Analysis of Existing FAIR Assessment Tools can be found here

 

This output supersedes the FAIR Data Maturity Model: specification and guidelines DOI: 10.15497/rda00045

 

Context

Findability, Accessibility, Interoperability and Reusability – the FAIR principles – intend to define a minimal set of related but independent and separable guiding principles and practices that enable both machines and humans to find, access, interoperate and re-use data and metadata. The FAIR principles were defined in 2016 in an article by Mark Wilkinson et. al1. FORCE112 and GO FAIR3 provide further information on the principles. The principles have to be considered as inspiring concepts but not strict rules. This means that they may lead to diverse interpretations and ambiguity.

To remedy the proliferation of FAIRness measurements based on different interpretations of the principles, the RDA Working Group “FAIR data maturity model” established in January 2019 aims to develop a common set of core assessment criteria for FAIRness, as an RDA Recommendation. In the course of 2019 and the first half of 2020, the WG established a set of indicators and maturity levels for those indicators.

Asaresultof thework,afirstsetofguidelinesandachecklistrelatedtotheimplementationoftheindicators were produced, with the objective to further align the guidelines for evaluating FAIRness with the needs of the community.

 

Objective

This document specifies indicators for assessing adherence to the FAIR principles. These indicators are designed for re-use in evaluation approaches and are accompanied by guidelines for their use. The guidelines are intended to assist evaluators to implement the indicators in the evaluation approach or tool they manage.

The exact way to evaluate data based on the core criteria is up to the owners of the evaluation approaches, taking into account the requirements of their community. The objective is to make sure that the indicators, the maturity levels and the prioritisation are understood in the same way. The maturity model is not meant as a “how to”, but instead as a way to normalise assessment.

No part of this document is to be considered ‘normative’; it intends to provide guidelines to inform assessment approaches but leaves the way it is implemented to the evaluator.

 

Use of this document

The FAIR data maturity model guidelines primarily address owners of (FAIR) assessment methodologies, including questionnaires and automated tools, as listed for example in FAIRassist4.

Nevertheless, this document is not only restricted to these stakeholders. It may also be used by researchers,data service owners, funders and infrastructures in different scientific and research disciplines, industry and the public sector, who are active and/or interested in the FAIR data principles and in particular in assessment criteria and methodologies for evaluating their real-life uptake and implementation level.

This document provides definitions and examples for every indicator in order to avoid confusion or ambiguity, and aims to provide a clear outline of the framework (i.e. indicators with their maturity levels and priorities) linking the indicators to the principles, and suggesting the way the indicators may be evaluated.

All terms which could be subject to different interpretation have been defined in a glossary, included in this document. Moreover, on the first mention of a term, a hyperlink to its definition in the glossary is provided.

 

Read the full recommendation.
 

Output Status: 
RDA Endorsed Recommendations
Review period start: 
Monday, 8 June, 2020
Group content visibility: 
Use group defaults
Primary WG Focus / Output focus: 
Domain Agnostic: 
Domain Agnostic
AttachmentSize
PDF icon FAIR Data Maturity Model.pdf1.01 MB